当前位置: 首页 > news >正文

AI基本概念(人工智能、机器学习、深度学习)

人工智能 、 机器学习、 深度学习的概念和关系

在这里插入图片描述

  • 人工智能 (Artificial Intelligence)AI- 机器展现出人类智慧
  • 机器学习 (Machine Learning) ML, 达到人工智能的方法
  • 深度学习 (Deep Learning)DL,执行机器学习的技术
    从范围上来说:
    AI > ML > DL
    从逻辑关系上:
    AI是目标, ML是手段, DL是技术

概念

  • 人工智能(AI):人工智能是一门技术科学,旨在模拟、延伸和扩展人的智能。它涵盖了广泛的理论、方法、技术及应用系统,是新一轮科技革命和产业变革的重要驱动力量。

  • 机器学习(ML):机器学习是人工智能的一个子领域,它专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构来不断改善自身的性能。机器学习涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。

  • 深度学习(DL):深度学习是机器学习的一个子集,也是目前最热门的研究方向之一。它通过搭建深层的神经网络模型来处理任务,如图像分类、语音识别等。深度学习的核心是学习样本数据的内在规律和表示层次,帮助机器实现类似于人类的分析学习能力。

区别

  1. 技术层次:人工智能是一个更广泛的领域,而机器学习和深度学习则是其重要组成部分。深度学习是机器学习的一个子集,特别侧重于通过深层的神经网络模型来进行学习。
  2. 模型复杂度:机器学习的模型可以简单到线性模型和统计模型,而深度学习的模型则通常更为复杂,包含多层神经网络。
  3. 数据处理:深度学习通常需要处理大量的数据,尤其是在图像、语音等非结构化数据方面表现出色。相比之下,机器学习对数据量的要求并不那么严格。
  4. 算法:传统机器学习算法大多基于统计学,而深度学习则更多地依赖于神经网络和复杂的隐藏层算法。
  5. 可解释性:机器学习模型通常较为简单,具有一定的可解释性。而深度学习模型由于其复杂性和黑箱性质,通常难以解释。
  6. 应用领域:机器学习广泛应用于推荐系统、数据挖掘等领域;而深度学习则更多地应用于图像识别、语音识别、自然语言处理等复杂任务

关联

一、概念层面

  1. 人工智能(AI):
    • 定义:研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
    • 特点:涵盖了广泛的技术领域,如自然语言理解、图像识别、语音识别等。
  2. 机器学习(ML):
    • 定义:人工智能的一个子领域,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。
    • 方法:通过数据和算法,自动调整模型参数,实现预测和分类等功能。
  3. 深度学习(DL):
    • 定义:机器学习的一个子方向,通过构建深度神经网络模型来实现大规模数据的自动分类和预测。
    • 特点:利用深层的神经网络模型处理任务,尤其在图像识别、语音识别等领域有出色表现。

二、关系层面

  1. 人工智能是一个大的概念,涵盖了多个子领域和技术方向。
  2. 机器学习是人工智能的一个重要组成部分和实现方式,它赋予了计算机自动学习和优化的能力。
  3. 深度学习是机器学习的一个高级形式或特殊分支,它通过深度神经网络模型实现了更复杂的任务处理和数据预测。

三、技术层面

  1. 人工智能是一个综合性的领域,包括机器学习、深度学习、专家系统等多种技术。
  2. 机器学习是实现人工智能的一种方法,它基于数据和算法来训练和优化模型。
  3. 深度学习则是机器学习的一个子方向,通过深层的神经网络模型来处理任务,具有更强大的表示能力和泛化能力。

四、应用层面

  1. 人工智能的应用非常广泛,包括但不限于语音识别、图像识别、自然语言处理、智能推荐等。
  2. 机器学习在实际应用中有着广泛的应用领域,如推荐系统、数据挖掘等。
  3. 深度学习则在图像识别、语音识别、自然语言处理等领域中表现出色,成为目前最为流行的实现方式之一。

人工智能 、 机器学习、 深度学习的具体应用示例

一、人工智能(AI)示例

人工智能的应用广泛,以下是一些具体的示例:

  1. 无人驾驶汽车:利用AI技术实现车辆的自主导航、障碍物识别、决策控制等功能。例如,谷歌的Waymo和特斯拉等公司都在积极研发无人驾驶汽车技术。
  2. 智能医疗:AI在医疗领域的应用包括医学影像分析、疾病诊断和治疗辅助等。例如,IBM的Watson医疗助手可以通过分析医疗图像和病历数据,帮助医生进行更准确的诊断。
  3. 智能家居:AI技术可以在家居领域实现智能化控制、安全监控等功能。例如,通过智能家居系统,用户可以远程控制家中的灯光、温度、安全监控等设备。

二、机器学习(ML)示例

机器学习是AI的一个重要组成部分,以下是一些具体的ML示例:

  1. 推荐系统:基于用户的浏览历史、购买记录等信息,使用机器学习算法为用户推荐相关产品或服务。例如,电商平台中的“猜你喜欢”功能就是典型的机器学习应用。
  2. 图像分类:利用机器学习算法对图像进行自动分类。例如,使用支持向量机(SVM)或卷积神经网络(CNN)对动物、植物、建筑等图像进行分类。
  3. 情感分析:通过机器学习算法分析文本中的情感倾向,如正面、负面或中性。这在社交媒体分析、客户服务等领域有广泛应用。

三、深度学习(DL)示例

深度学习是机器学习的一个子领域,以下是一些具体的DL示例:

  1. 图像识别:深度学习在图像识别领域取得了显著成果,尤其是在人脸识别、目标检测等方面。例如,使用深度学习算法可以实现对人脸的精确识别,进而实现刷脸支付、人脸门禁等功能。
  2. 语音识别:深度学习在语音识别领域也有广泛应用,如智能语音助手、语音搜索等。例如,苹果的Siri和亚马逊的Alexa等智能语音助手就是基于深度学习技术实现的。
  3. 自然语言处理:深度学习在自然语言处理(NLP)领域也有广泛应用,如机器翻译、文本生成等。例如,谷歌的神经机器翻译系统就是基于深度学习技术实现的,可以实现高效、准确的跨语言翻译。

GAI的概念以及与AI的区别和关系

GAI,即生成式人工智能(Generative Artificial Intelligence),是一种能够创造新内容的人工智能技术。它不同于传统的、基于规则或统计分析的人工智能方法,而是基于机器学习和深度学习算法,通过从大量数据中学习特定的模式或风格,然后生成新的内容。GAI的核心能力在于其创新性输出,包括但不限于文本、图像、音频、代码甚至三维模型等多元形式的数据。

GAI的特点

  1. 创新性:GAI能够根据训练数据集的模式和规律自主创建全新的内容,具有高度的创新性。
  2. 多样性:GAI能够生成多种形式的内容,如文本、图像、音频等,满足不同领域的需求。
  3. 高效性:通过深度学习和神经网络等技术,GAI能够快速地学习并生成高质量的内容。

GAI与AI的区别

  1. 范畴大小:AI是一个广泛的概念,涵盖了模拟、延伸和扩展人类智能的所有技术,包括机器学习、深度学习、自然语言处理等多个子领域。而GAI则是AI的一个子集或特定类型,专注于生成新的内容。
  2. 功能与应用:AI的功能和应用非常广泛,包括决策支持、预测分析、自动化控制等。而GAI则更侧重于内容创作和生成,如文章、诗歌、图像、视频等的创作和生成。
  3. 技术特点:AI包含了多种技术,如机器学习、深度学习、自然语言处理等。而GAI则主要基于深度学习和神经网络等技术,通过从大量数据中学习并生成新的内容。
  4. 创新性:虽然AI在某些领域也表现出一定的创新性,但GAI的创新性更为突出。它能够通过学习和模仿生成全新的、前所未有的内容,展示了从海量数据中提炼知识进而创造新知识的智能化能力。

ChatGPT的概念以及其与GAI的关系

ChatGPT是一款由OpenAI开发的聊天机器人模型,它能够模拟人类的语言行为,与用户进行自然的交互。ChatGPT建立在OpenAI的GPT-3.5大型语言模型之上,并采用了监督学习和强化学习技术进行了微调。它使用了Transformer架构作为深度学习模型的基础,具有很强的表达能力和学习能力。ChatGPT的应用场景广泛,包括对话机器人、问答系统、客服机器人等,并可以应用于各种自然语言处理任务,如文本摘要、情感分析和信息提取等。

ChatGPT与GAI的关系

  1. 技术基础
    • ChatGPT作为一种高级别的聊天机器人模型,其技术基础与GAI(生成式人工智能)紧密相关。GAI强调生成新内容的能力,而ChatGPT正是通过其强大的生成能力,为用户提供个性化的回答和回复。
  2. 应用场景
    • ChatGPT在内容生成方面的应用与GAI的目标相契合。GAI旨在通过生成新内容来辅助或替代人类的创作过程,而ChatGPT则可以通过其自然语言处理能力,为用户提供包括文本、代码等多种形式的生成内容。
  3. 创新性与发展
    • ChatGPT的发展进一步推动了GAI技术的进步。随着ChatGPT在对话系统、问答系统等领域的应用和优化,GAI在内容生成方面的能力也得到了进一步的提升。
  4. 持续学习
    • ChatGPT具有持续学习的能力,这也是GAI的一个重要特点。通过不断的训练和反馈,ChatGPT能够不断改进和优化自己的性能,为用户提供更加准确、丰富的回答。这种能力使得ChatGPT在GAI领域具有更高的应用价值和潜力。

其他的GAI 工具

除了OpenAI的ChatGPT之外,GAI(生成式人工智能)领域还有众多其他工具。以下是一些主要的GAI工具,它们各自具有独特的功能和应用场景, 比如:

  1. Google Bard
    • 功能:Google的试验性会话式生成AI聊天机器人,使用NLP和机器学习快速回应各种询问。
    • 应用场景:包括生成文本、翻译语言、回答问题以及生成创意内容等。
    • 特点:用户友好的界面和多项便利的功能,如编辑之前的问题和在任何点重启对话的能力。
  2. Microsoft Azure AI服务
    • 功能:提供多种AI服务,包括语音识别、图像识别等。
    • 应用场景:企业可以使用Azure的AI服务构建智能应用,如智能客服、图像识别系统等。
    • 特点:作为微软的云平台,Azure提供了广泛的AI解决方案,支持企业快速开发智能应用。
  3. IBM Watson
    • 功能:一个认知计算系统,能够处理大量数据,并提供洞察和分析。
    • 应用场景:Watson可以应用于医疗诊断、金融分析、客户服务等领域,帮助企业和机构做出更准确的决策。
    • 特点:Watson在多个领域都有成功的应用案例,展示了其强大的数据分析和处理能力。
  4. Amazon Alexa
    • 功能:一个智能个人助理,能够进行语音交互,控制智能家居设备,并提供信息查询等功能。
    • 应用场景:用户可以通过语音命令与Alexa进行交互,如播放音乐、查询天气、控制智能灯泡等。
    • 特点:Alexa作为智能家居的入口,为用户提供了便捷的语音交互体验。
  5. TensorFlow
    • 功能:一个开源的机器学习框架,由Google Brain团队开发,用于数据分析和机器学习项目。
    • 应用场景:开发者可以使用TensorFlow构建和训练各种机器学习模型,应用于图像识别、语音识别、自然语言处理等领域。
    • 特点:TensorFlow拥有强大的社区支持和丰富的资源,是机器学习领域的重要工具。
  6. Bing AI
    • 功能:从网络上收集答案以回答用户的查询,不仅是一个AI语言模型,还能接入互联网并浏览网络找到文档、视频等。
    • 应用场景:适用于在线搜索和智能问答系统。
    • 特点:Bing AI的个性化推荐和对话风格选项为用户提供了更加丰富的搜索体验。
  7. YouChat
    • 功能:一款AI驱动的聊天机器人搜索引擎,通过自然语言输入接收答案。
    • 应用场景:适用于在线查询和客服系统。
    • 特点:YouChat利用语言模型和算法的组合提供准确、相关和直观的回应,并支持跨平台同步。
  8. Jasper AI
    • 功能:一款帮助营销人员、企业主和品牌快速写出准确的SEO友好内容的写作软件。
    • 应用场景:内容营销、广告文案创作等。
    • 特点:Jasper AI提供了超过50个AI驱动的写作模板,支持多种语言,并可以生成数字艺术。

ChatGPT 3.5, ChatGPT 4, ChatGPT4o

ChatGPT 3.5 介绍

一、概述

ChatGPT 3.5是OpenAI在ChatGPT系列基础上进行改进的一款AI模型,它在自然语言处理方面展现出了非常强大的能力,能够进行对话、阅读、生成文本等多种任务。

二、主要特点

  1. 模型规模与参数:ChatGPT 3.5的预训练模型包含了1750亿个参数,是目前最大的自然语言处理模型之一。
  2. 多语言支持:该模型可以处理多种语言,包括英语、西班牙语、德语、法语、意大利语、荷兰语、俄语、韩语、日语、阿拉伯语和中文等。
  3. 自适应回复:采用“Adaptive Prompt”技术,可以根据用户输入的上下文和意图自适应地生成回复。
  4. 广泛的应用场景:ChatGPT 3.5可用于生成对话、回答问题、提供建议等任务,是深度学习技术的巅峰之作之一。

三、应用前景

ChatGPT 3.5在人工智能领域有着广泛的应用前景,包括但不限于在线客服和支持、虚拟助手和个性化服务、内容生成和创意辅助、教育和培训等。

ChatGPT 4 介绍

一、概述

ChatGPT 4.0是OpenAI开发的最新一代大型语言模型,是ChatGPT的升级版本。它在多个自然语言处理任务中的表现都比之前的版本更好,具有更强的适应性和通用性。

二、主要特点

  1. 多模态输入:ChatGPT 4.0首次支持接受图像或文本输入,并发出文本输出,实现了多模态的理解和生成。
  2. 视觉变换器(ViT):采用了一种新颖的架构,称为视觉变换器(Vision Transformer),用于处理图像输入。
  3. 跨注意力机制:增加了图像编码器和文本编码器之间的跨注意力机制,使得两种类型的输入可以相互影响和参考。
  4. 增强的功能和性能:ChatGPT 4.0在对话能力、知识库、创造力、推理和解决问题能力等方面都有显著提升。
  5. 训练数据量:ChatGPT 4.0的训练数据量是ChatGPT 3.0的100倍以上,包含了截至2022年互联网上的几乎所有文本信息。

ChatGPT 4o

OpenAI 于2024年5月14日正式宣布推出 GPT-4o,这一消息迅速在科技界引起了巨大反响。
GPT-4o,其中 “o” 代表 “omni”,即全能之意。这一模型不仅在文本处理上达到了前所未有的水平,更在图像和语音处理方面取得了重大突破。GPT-4o 能够实时对音频、视觉和文本进行推理,提供与人类相似的响应时间。
GPT-4o 的技术亮点包括:

  • 实时音频输入响应: GPT-4o 能够在最快232毫秒内响应音频输入,平均响应时间为320毫秒,几乎接近人类在交谈中的响应时间。

  • **多模态交互:**该模型可以接受文本、音频和图像三者组合作为输入,并生成文本、音频和图像的任意组合输出,这标志着向更自然人机交互迈出的重要一步。

  • 安全性与伦理: GPT-4o 在设计中内置了跨模式的安全性,并与外部专家合作,以识别和减少新增加的模式可能引入或放大的风险。

  • 性能提升: 在传统基准测试中,GPT-4o 在文本、推理和编码等方面实现了与 GPT-4 Turbo 级别相当的性能,同时在多语言、音频和视觉功能方面的表现分数也创下了新高。



相关文章:

AI基本概念(人工智能、机器学习、深度学习)

人工智能 、 机器学习、 深度学习的概念和关系 人工智能 (Artificial Intelligence)AI- 机器展现出人类智慧机器学习 (Machine Learning) ML, 达到人工智能的方法深度学习 (Deep Learning)DL,执行机器学习的技术 从范围…...

LabVIEW幅频特性测试系统

使用LabVIEW软件开发的幅频特性测试系统。该系统整合了Agilent 83732B信号源与Agilent 8563EC频谱仪,通过LabVIEW编程实现自动控制和数据处理,提供了成本效益高、操作简便的解决方案,有效替代了昂贵的专用仪器,提高了测试效率和设…...

校园卡手机卡怎么注销?

校园手机卡的注销流程可以根据不同的运营商和具体情况有所不同,但一般来说,以下是注销校园手机卡的几种常见方式,我将以分点的方式详细解释: 一、线上注销(通过手机APP或官方网站) 下载并打开对应运营商的…...

logback自定义规则脱敏

自定义规则conversionRule public class LogabckMessageConverter extends MessageConverter {Overridepublic String convert(ILoggingEvent event) {String msg event.getMessage();if ("INFO".equals(event.getLevel().toString())) {msg .....脱敏实现}return …...

高效批量复制与覆盖:一键实现文件管理,轻松应对同名文件,简化工作流程

在数字时代,我们每天都在与海量的文件和数据打交道。你是否曾经遇到过这样的情况:需要批量复制文件到指定文件夹,但一遇到同名文件就头疼不已,要么手动一个个确认覆盖,要么冒着数据丢失的风险直接操作?别担…...

vue3中使用Antv G6渲染树形结构并支持节点增删改

写在前面 在一些管理系统中,会对组织架构、级联数据等做一些管理,你会怎么实现呢?在经过调研很多插件之后决定使用 Antv G6 实现,文档也比较清晰,看看怎么实现吧,先来看看效果图。点击在线体验 实现的功能…...

【PB案例学习笔记】-26制作一个带浮动图标的工具栏

写在前面 这是PB案例学习笔记系列文章的第26篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…...

反向沙箱技术:安全隔离上网

在信息化建设不断深化的今天,业务系统的安全性和稳定性成为各公司和相关部门关注的焦点。面对日益复杂的网络威胁,传统的安全防护手段已难以满足需求。深信达反向沙箱技术,以其独特的设计和强大的功能,成为保障政务系统信息安全的…...

前端在for循环中使用Element-plus el-select中的@click.native动态传参

<el-table ref"table" :data"editTableVariables" cell-dblclick"handleRowDblClick" style"width: 100%" > <!-- el-table-column: 表格列组件&#xff0c;定义每列的展示内容和属性 --><el-table-column prop&q…...

Oracle SQL - CONNECT BY语句Where条件中不能使用OR?[已解决]

数据 SQL> SELECT * FROM demo_a;CUSTOMER TOTAL ---------- ---------- A 100200SQL> SELECT * FROM demo_b;CUSTOMER RN QTY ---------- ---------- ---------- A 1 30 A 2 …...

python-逻辑语句

if else语句 不同于C&#xff1a;else if range语句&#xff1a; continue continue的作用是&#xff1a; 中断所在循环的当次执行&#xff0c;直接进入下一次 continue在嵌套循环中的应用 break 直接结束所在的循环 break在嵌套循环中的应用 continue和break&#xff0c;在…...

【stm32】大一上学期笔记复制

砌墙单片机 外设是什么&#xff1f; ipage 8 nx轴 128 X0-127 y0-63 PWM脉冲宽度调制 PWM脉冲宽度调制 2023年10月13日 基本特性&#xff1a;脉冲宽度调制PWM是一种对模拟信号进行数字编码的方法。广泛引用于电机控制&#xff0c;灯光的亮度调节&#xff0c;功率控制等领域…...

LeetCode题练习与总结:二叉树的前序遍历--144

一、题目描述 给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,2,3]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入&#xff1a;roo…...

如何优化Spring Boot应用的性能

如何优化Spring Boot应用的性能 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨如何通过优化技术和最佳实践来提升Spring Boot应用的性能&#x…...

人工智能--目标检测

欢迎来到 Papicatch的博客 文章目录 &#x1f349;引言 &#x1f349;概述 &#x1f348;目标检测的主要流程通常包括以下几个步骤 &#x1f34d;数据采集 &#x1f34d;数据预处理 &#x1f34d;特征提取 &#x1f34d;目标定位 &#x1f34d;目标分类 &#x1f348;…...

Java基础之List实现类

文章目录 一、基本介绍二、常见方法三、ArrayList注意事项四、ArrayList底层结构我的理解 五、ArrayList扩容机制无参构造器有参构造器 六、LinkedList介绍底层操作机制 七、ArrayList 与 LinkedListArrayListLinkedList tip&#xff1a;以下是正文部分 一、基本介绍 List集合…...

java List接口介绍

List 是 Java 集合框架中的一个接口,它继承自 Collection 接口,代表一个有序的元素集合。List 允许重复的元素,并且可以通过索引来访问元素。Java 提供了多种 List 的实现,如 ArrayList、LinkedList、Vector 和 CopyOnWriteArrayList。 List接口概述 List 接口提供了一些…...

调度器APScheduler定时执行任务

APScheduler&#xff08;Advanced Python Scheduler&#xff09;是一个Python库&#xff0c;用于调度任务&#xff0c;使其在预定的时间间隔或特定时间点执行。它支持多种调度方式&#xff0c;包括定时&#xff08;interval&#xff09;、日期&#xff08;date&#xff09;和Cr…...

git合并分支的疑问

今天遇到一个奇怪的问题&#xff1a; 1、后端从master拉了三个分支。分别为dev、test、和stage。 2、研发1从dev拉了分支feature1,然后commit、commit、commit……。最后request merge到dev、test和stage。成功了。 3、研发2从dev拉了分支feature2,注意&#xff0c;feature2…...

catia数控加工仿真Productlist无法添加部件或零件

这种情况是没有把NCSetup显示 在工具中勾选即可...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

Canal环境搭建并实现和ES数据同步

作者&#xff1a;田超凡 日期&#xff1a;2025年6月7日 Canal安装&#xff0c;启动端口11111、8082&#xff1a; 安装canal-deployer服务端&#xff1a; https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...