20个Python使用小技巧,建议收藏~
1、易混淆操作
本节对一些 Python 易混淆的操作进行对比。
1.1 有放回随机采样和无放回随机采样
import random
random.choices(seq, k=1) # 长度为k的list,有放回采样
random.sample(seq, k) # 长度为k的list,无放回采样
1.2 lambda 函数的参数
func = lambda y: x + y # x的值在函数运行时被绑定
func = lambda y, x=x: x + y # x的值在函数定义时被绑定
1.3 copy 和 deepcopy
import copy
y = copy.copy(x) # 只复制最顶层
y = copy.deepcopy(x) # 复制所有嵌套部分
复制和变量别名结合在一起时,容易混淆:
a = [1, 2, [3, 4]]# Alias.
b_alias = a
assert b_alias == a and b_alias is a# Shallow copy.
b_shallow_copy = a[:]
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]# Deep copy.
import copy
b_deep_copy = copy.deepcopy(a)
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。
2、常用工具
2.1 读写 CSV 文件
import csv
# 无header的读写
with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理for row in csv.reader(f):print(row[0], row[1]) # CSV读到的数据都是str类型
with open(name, mode='wt') as f:f_csv = csv.writer(f)f_csv.writerow(['symbol', 'change'])# 有header的读写
with open(name, mode='rt', newline='') as f:for row in csv.DictReader(f):print(row['symbol'], row['change'])
with open(name, mode='wt') as f:header = ['symbol', 'change']f_csv = csv.DictWriter(f, header)f_csv.writeheader()f_csv.writerow({'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import sys
csv.field_size_limit(sys.maxsize)
csv 还可以读以 \t 分割的数据
f = csv.reader(f, delimiter='\t')
2.2 迭代器工具
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertools
itertools.islice(iterable, start=None, stop, step=None)
# islice('ABCDEF', 2, None) -> C, D, E, Fitertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素
# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代
# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代
# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择
# compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False)itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序
# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)itertools.permutations(iterable, r=None) # 排列,返回值是Tuple
# permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DCitertools.combinations(iterable, r=None) # 组合,返回值是Tuple
itertools.combinations_with_replacement(...)
# combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接
# chain('ABC', 'DEF') -> A, B, C, D, E, Fimport heapq
heapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接
# merge('ABF', 'CDE') -> A, B, C, D, E, Fzip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
2.3 计数器
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections
# 创建
collections.Counter(iterable)# 频次
collections.Counter[key] # key出现频次
# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)# 插入/更新
collections.Counter.update(iterable)
counter1 + counter2; counter1 - counter2 # counter加减# 检查两个字符串的组成元素是否相同
collections.Counter(list1) == collections.Counter(list2)
2.4 带默认值的 Dict
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collections
collections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
2.5 有序 Dict
import collections
collections.OrderedDict(items=None) # 迭代时保留原始插入顺序
3、高性能编程和调试
3.1 输出错误和警告信息
向标准错误输出信息
import sys
sys.stderr.write('')
输出警告信息
import warnings
warnings.warn(message, category=UserWarning)
# category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always')
$ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore')
$ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
3.2 代码中测试
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分
if __debug__:pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
3.3 代码风格检查
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
3.4 代码耗时
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义
from contextlib import contextmanager
from time import perf_counter@contextmanager
def timeblock(label):tic = perf_counter()try:yieldfinally:toc = perf_counter()print('%s : %s' % (label, toc - tic))# 代码块耗时测试
with timeblock('counting'):pass
代码耗时优化的一些原则
专注于优化产生性能瓶颈的地方,而不是全部代码。
避免使用全局变量。局部变量的查找比全局变量更快,将全局变量的代码定义在函数中运行通常会快 15%-30%。
避免使用.访问属性。使用 from module import name 会更快,将频繁访问的类的成员变量 self.member 放入到一个局部变量中。
尽量使用内置数据结构。str, list, set, dict 等使用 C 实现,运行起来很快。
避免创建没有必要的中间变量,和 copy.deepcopy()。
字符串拼接,例如 a + ':' + b + ':' + c 会创造大量无用的中间变量,':',join([a, b, c]) 效率会高不少。另外需要考虑字符串拼接是否必要,例如 print(':'.join([a, b, c])) 效率比 print(a, b, c, sep=':') 低。
相关文章:
20个Python使用小技巧,建议收藏~
1、易混淆操作 本节对一些 Python 易混淆的操作进行对比。 1.1 有放回随机采样和无放回随机采样 import random random.choices(seq, k1) # 长度为k的list,有放回采样 random.sample(seq, k) # 长度为k的list,无放回采样1.2 lambda 函数的参数 …...
Kafka 主题管理
Kafka 主题管理创建主题查看主题修改主题内部主题异常主题删除失败创建主题 创建 Kafka 主题 create : 创建主题partitions : 主题的分区数replication-factor : 每个分区下的副本数 bin/kafka-topics.sh \ --bootstrap-server broker_host:port \ --create --topic my_topi…...

【深度学习】GPT系列模型:语言理解能力的革新
GPT-1🏡 自然语言理解包括一系列不同的任务,例如文本蕴涵、问答、语义相似度评估和文档分类。尽管大量的未标记文本语料库很充足,但用于学习这些特定任务的标记数据却很稀缺,使得判别式训练模型难以达到良好的表现。我们证明&…...
【Vue.js】全局状态管理模式插件vuex
文章目录全局状态管理模式Vuexvuex是什么?什么是“状态管理模式”?vuex的应用场景Vuex安装开始核心概念一、State1、单一状态树2、在 Vue 组件中获得 Vuex 状态3、mapState辅助函数二、Getter三、Mutation1、提交载荷(Payload)2、…...

JPA 之 Hibernate EntityManager 使用指南
Hibernate EntityManager 专题 参考: JPA – EntityManager常用API详解EntityManager基本概念 基本概念及获得 EntityManager 对象 基本概念 在使用持久化工具的时候,一般都有一个对象来操作数据库,在原生的Hibernate中叫做Session&…...
英语作文提示(持续更新)
星期(介词on)Monday星期一Tuesday星期二Wednesday星期三Thursday星期四Friday星期五Saturday星期六Sunday星期日月份(介词in)lunar calendar农历on the second day of the second lunar农历初二January1月February2月March3月Apri…...

【计算机组成原理】计算机的性能指标、数据的表示和运算、BCD码和余3码
计算机组成原理(二) 计算机的性能指标: 存储器的性能指标: 存储器中,MAR为存储单元的个数 MDR为机械字长也就是存储单元的长度 存储器的大小MAR*MDR n为二进制位能表示出几种不同的状态呢? 2的n次方种不同的状态 CPU的性能指标…...

三天吃透MySQL八股文(2023最新整理)
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~ Github地址:https://github.com/…...
队列_23约瑟夫问题+_24猫狗收容所
约瑟夫问题 n 个小孩围坐成一圈,并按顺时针编号为1,2,…,n,从编号为 p 的小孩顺时针依次报数,由1报到m ,当报到 m 时,该小孩从圈中出去,然后下一个再从1报数,当报到 m 时再出去。如此反复&#…...
gradle
Gradle环境介绍OpenJDK 17.0.5Gradle 7.6示例代码 fly-gradleGradle 项目下文件介绍如果你的电脑安装了 gradle,可以使用 gradle init 去初始化一个新的 gradle 工程,然后使用电脑安装的 gradle 去执行构建命令。但是每个开发电脑上的 gradle 版本不一样…...

[牛客]链表中倒数第k个结点
使用快慢指针法:两种思路:1.fast先向后走k-1次,slow再向后走1次,然后fast和slow同时向后走,当fast走到最后一个结点时,slow刚好在倒数第k个位置上;2.fast先向后走k次,slow再向后走1次,然后fast和slow同时向后走,当fast走到最后一个结点的后面时(此时为NULL),slow刚好在倒数第k个…...
English Learning - L2 语音作业打卡 双元音 [eɪ] [aɪ] Day14 2023.3.6 周一
English Learning - L2 语音作业打卡 双元音 [eɪ] [aɪ] Day14 2023.3.6 周一💌发音小贴士:💌当日目标音发音规则/技巧:🍭 Part 1【热身练习】🍭 Part2【练习内容】🍭【练习感受】🍓元音 /eɪ/…...
C++ this 指针与静态成员
文章目录参考描述实例成员与静态成员实例成员静态成员静态成员属性隐式形参 this 指针冲突this 指针静态成员函数this 指针与静态成员函数参考 项目精通C (第九版)托尼加迪斯、朱迪沃尔特斯、戈德弗雷穆甘达 (著) / 黄刚 等 &…...

REDIS16_LRU算法概述、查看默认内存、默认是如何删除数据、缓存淘汰策略
文章目录①. LRU算法概述②. 查看默认内存③. 如何删除数据④. 缓存淘汰策略①. LRU算法概述 ①. LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的数据给予淘汰 (leetcode-cn.com/problems/lru-cache) ②. LRU算法题来源 ③.…...

ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning学习笔记
ClassMix相关介绍主要思想方法Mean-Teacher损失函数交叉熵损失标签污染实验实验反思参考资料相关介绍 从DAFormer溯源到这篇文章,ClassMix主要是集合了伪标签和一致性正则化,思想来源于CutMix那条研究路线,但是优化了CutMix中的标签污染的情…...
CSDN竞赛第35期题解
CSDN竞赛第35期题解 1、题目名称:交换后的or 给定两组长度为n的二进制串,请问有多少种方法在第一个串中交换两个不同位置上的数字,使得这两个二进制串“或”的 结果发生改变? int n;cin>>n; string a,b;cin>>a>…...

Java应用服务系统安全性,签名和验签浅析
1 前言 随着互联网的普及,分布式服务部署越来越流行,服务之间通信的安全性也是越来越值得关注。这里,笔者把应用与服务之间通信时,进行的的安全性相关,加签与验签,进行了一个简单的记录。 2 安全性痛点 …...

spring中bean的实例化
构造方法实现实例化 无参构造器实例化 我们之前用的就一直是无参构造器实现实例化,虽然没有在类中写构造器,但是每个类都会有一个默认的无参构造器 有参构造器实例化 相比于无参构造器,我们只需要传入参数就可以了 我们可以通过construc…...

磨皮插件portraiture2023最新中文版
Portraiture滤镜是一款 Photoshop,Lightroom 和 Aperture 插件,DobeLighttroom 的 Portraiture 消除了选择性掩蔽和逐像素处理的繁琐的手工劳动,以帮助您在肖像修整方面取得卓越的效果。它是一个强大的,但用户友好的插件照明.这是…...
记录每日LeetCode 2269.找到一个数组的K美丽值 Java实现
题目描述: 一个整数 num 的 k 美丽值定义为 num 中符合以下条件的 子字符串 数目: 子字符串长度为 k 。 子字符串能整除 num 。 给你整数 num 和 k ,请你返回 num 的 k 美丽值。 注意: 允许有 前缀 0 。 0 不能整除任何…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...

FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...