不同系统间数据交换要通过 api 不能直接数据库访问
很多大数据开发提供数据给外部系统直接给表结构,这是不好的方式。在不同系统间进行数据交换时,通过API(应用程序编程接口)而非直接访问数据库是现代系统集成的一种最佳实践。
目录
- 为什么要通过API进行数据交换
- 如何通过API进行数据交换
- 实现步骤
- 使用Flask构建RESTful API
- 安装Flask
- API代码示例
- 启动API服务器
- 使用Spring Boot构建RESTful API
- 创建Spring Boot项目并添加依赖
- 创建API控制器
- 创建数据实体和仓库
- 启动Spring Boot应用
- 将大数据平台的数据提供给外部系统
- 使用PySpark读取数据
- 将PySpark数据集成到Flask API
- 总结
为什么要通过API进行数据交换
-
安全性:
- 控制访问:API可以通过认证和授权机制来控制谁可以访问数据。
- 隔离系统:通过API访问数据可以隔离不同系统,减少一个系统的漏洞或故障对其他系统的影响。
-
数据一致性:
- 统一接口:API提供了统一的数据访问接口,可以确保数据的一致性和完整性。
- 减少重复:通过API避免了在多个地方实现相同的数据逻辑,从而减少了重复代码和潜在的错误。
-
维护性和扩展性:
- 模块化设计:API使得系统更加模块化,便于维护和扩展。
- 易于升级:通过API可以更容易地进行系统的升级和更新,而不影响其他系统。
-
日志和监控:
- 跟踪访问记录:API可以记录所有的请求和响应,便于监控和审计。
- 性能监控:通过API可以更容易地监控系统性能,发现和解决瓶颈问题。
如何通过API进行数据交换
-
RESTful API:
- 定义资源:每个API端点代表一个资源,如用户、订单等。
- 使用HTTP方法:GET、POST、PUT、DELETE等方法对应于读取、创建、更新、删除操作。
-
SOAP API:
- 使用XML:SOAP(简单对象访问协议)使用XML格式来定义消息结构。
- 更严格的标准:SOAP提供了更严格的协议和标准,适用于需要高安全性和事务处理的场景。
-
GraphQL:
- 灵活查询:允许客户端指定需要的数据结构,减少数据传输量。
- 单个端点:通过单个端点提供数据查询和操作,简化接口管理。
-
消息队列:
- 异步通信:使用消息队列(如RabbitMQ、Kafka)可以实现系统间的异步数据传输。
- 解耦系统:通过消息队列可以解耦生产者和消费者,提升系统的扩展性和可靠性。
实现步骤
-
需求分析:
- 确定需要交换的数据和操作,设计API接口和数据模型。
-
API设计:
- 选择合适的API风格(RESTful、SOAP、GraphQL等)。
- 定义API端点、请求方法、参数和响应格式。
-
安全机制:
- 实现认证(如OAuth、JWT)和授权机制。
- 确保数据传输的安全性(如HTTPS)。
-
开发和测试:
- 开发API,并进行单元测试和集成测试。
- 使用工具(如Postman、Swagger)进行测试和文档编写。
-
部署和监控:
- 部署API服务,并设置日志和监控系统。
- 定期检查和优化API性能和安全性。
通过API进行数据交换不仅提高了系统的安全性和维护性,还增强了系统的扩展能力和灵活性,是现代系统架构设计中的重要实践。
其实开发接口 也不难,以下是一些代码示例和步骤,展示如何使用不同技术栈实现API,并将大数据平台的数据提供给外部系统。
使用Flask构建RESTful API
安装Flask
pip install Flask
API代码示例
from flask import Flask, request, jsonify
import pandas as pd
import jsonapp = Flask(__name__)# 示例数据,实际情况中应从大数据平台读取数据
data = {'id': [1, 2, 3],'name': ['Alice', 'Bob', 'Charlie'],'score': [85, 90, 78]
}df = pd.DataFrame(data)@app.route('/api/data', methods=['GET'])
def get_data():result = df.to_dict(orient='records')return jsonify(result)@app.route('/api/data/<int:id>', methods=['GET'])
def get_data_by_id(id):result = df[df['id'] == id].to_dict(orient='records')if not result:return jsonify({'error': 'Data not found'}), 404return jsonify(result[0])@app.route('/api/data', methods=['POST'])
def add_data():new_data = request.jsondf.append(new_data, ignore_index=True)return jsonify({'message': 'Data added successfully'}), 201if __name__ == '__main__':app.run(debug=True)
启动API服务器
python app.py
使用Spring Boot构建RESTful API
创建Spring Boot项目并添加依赖
在pom.xml
文件中添加以下依赖:
<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jpa</artifactId></dependency><dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId><scope>runtime</scope></dependency>
</dependencies>
创建API控制器
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;import java.util.List;
import java.util.Optional;@RestController
@RequestMapping("/api/data")
public class DataController {@Autowiredprivate DataRepository dataRepository;@GetMappingpublic List<Data> getAllData() {return dataRepository.findAll();}@GetMapping("/{id}")public Data getDataById(@PathVariable Long id) {Optional<Data> data = dataRepository.findById(id);if (data.isPresent()) {return data.get();} else {throw new ResourceNotFoundException("Data not found with id " + id);}}@PostMappingpublic Data addData(@RequestBody Data data) {return dataRepository.save(data);}
}
创建数据实体和仓库
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;@Entity
public class Data {@Id@GeneratedValue(strategy = GenerationType.AUTO)private Long id;private String name;private int score;// getters and setters
}
import org.springframework.data.jpa.repository.JpaRepository;public interface DataRepository extends JpaRepository<Data, Long> {
}
启动Spring Boot应用
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}
}
将大数据平台的数据提供给外部系统
假设数据存储在Hadoop HDFS中,我们可以使用PySpark读取数据并通过API提供给外部系统。
使用PySpark读取数据
from pyspark.sql import SparkSessionspark = SparkSession.builder \.appName("Data API") \.getOrCreate()# 读取HDFS中的数据
df = spark.read.csv("hdfs://path/to/data.csv", header=True, inferSchema=True)# 将数据转换为Pandas DataFrame以便使用Flask
pandas_df = df.toPandas()
将PySpark数据集成到Flask API
from flask import Flask, request, jsonify
import pandas as pd
import json
from pyspark.sql import SparkSessionapp = Flask(__name__)# 创建Spark会话
spark = SparkSession.builder \.appName("Data API") \.getOrCreate()# 读取HDFS中的数据
df = spark.read.csv("hdfs://path/to/data.csv", header=True, inferSchema=True)
pandas_df = df.toPandas()@app.route('/api/data', methods=['GET'])
def get_data():result = pandas_df.to_dict(orient='records')return jsonify(result)@app.route('/api/data/<int:id>', methods=['GET'])
def get_data_by_id(id):result = pandas_df[pandas_df['id'] == id].to_dict(orient='records')if not result:return jsonify({'error': 'Data not found'}), 404return jsonify(result[0])if __name__ == '__main__':app.run(debug=True)
总结
通过构建API,可以安全、有效地将大数据平台的数据提供给外部系统。无论是使用Flask还是Spring Boot,都可以实现RESTful API的构建。同时,结合大数据平台的读取能力(如Hadoop HDFS和PySpark),可以轻松实现数据的获取和提供。
相关文章:

不同系统间数据交换要通过 api 不能直接数据库访问
很多大数据开发提供数据给外部系统直接给表结构,这是不好的方式。在不同系统间进行数据交换时,通过API(应用程序编程接口)而非直接访问数据库是现代系统集成的一种最佳实践。 目录 为什么要通过API进行数据交换如何通过API进行数据…...

深度探索“目录名称无效“:原因、解决方案与最佳实践
目录名称无效:现象背后的秘密 在日常使用电脑或移动设备时,我们时常会遇到“目录名称无效”的错误提示,这一提示仿佛是一道无形的屏障,阻断了我们与重要数据的联系。从本质上讲,“目录名称无效”意味着系统无法识别或…...
open3d基础使用-简单易懂
Open3D是一个开源库,主要用于快速开发处理3D数据的软件。它提供了丰富的数据结构和算法,支持点云、网格和RGB-D图像等多种3D数据的处理。以下是对Open3D基础使用的详细归纳和说明: 一、安装Open3D Open3D可以通过Python的包管理器pip进行安…...

【前端】HTML+CSS复习记录【5】
文章目录 前言一、padding、margin、border(边框边距)二、样式优先级三、var(使用 CSS 变量更改多个元素样式)四、media quary(媒体查询)系列文章目录 前言 长时间未使用HTML编程,前端知识感觉…...

三分钟看懂SMD封装与COB封装的差异
全彩LED显示屏领域中,COB封装于SMD封装是比较常见的两种封装方式,SMD封装产品主要有常规小间距以及室内、户外型产品,COB封装产品主要集中在小间距以及微间距系列产品中,今天跟随COB显示屏厂家中品瑞一起快速看懂SMD封装与COB封装…...
深入理解策略梯度算法
策略梯度(Policy Gradient)算法是强化学习中的一种重要方法,通过优化策略以获得最大回报。本文将详细介绍策略梯度算法的基本原理,推导其数学公式,并提供具体的例子来指导其实现。 策略梯度算法的基本概念 在强化学习…...

Unicode 和 UTF-8 以及它们之间的关系
通俗易懂的 Unicode 和 UTF-8 解释 Unicode 是什么? 想象一下,我们有一个巨大的图书馆,这个图书馆里有各种各样的书,每本书都有一个唯一的编号。Unicode 就像是这个图书馆的目录系统,它给世界上所有的字符࿰…...

【C++】多态详解
💗个人主页💗 ⭐个人专栏——C学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 一、多态概念 二、多态的定义及实现 1. 多态的构成条件 2. 虚函数 2.1 什么是虚函数 2.2 虚函数的重写 2.3 虚函数重写的两个…...
C#异常捕获
前言 在C#中,我们无法保证我们编写的程序没有一点bug,如果我们对于这些抛出异常的bug不进行任何的处理的话,那么我们的软件在抛出这些异常的时候就会崩溃,也就是软件闪退,并且这种闪退由于我们没有进行处理࿰…...

工业一体机根据软件应用需求灵活选配
在当今工业领域,数字化、智能化的发展趋势愈发明显,工业一体机作为关键的设备,其重要性日益凸显。而能够根据软件应用需求进行灵活选配的工业一体机,更是为企业提供了高效、定制化的解决方案。 一、工业一体机的全封闭无风扇散热功…...

centos7 mqtt服务mosquitto搭建记录
1、系统centos7.6,安装默认版本 yum install mosquitto 2、启动运行 systemctl start mosquitto 3、设置自启动 systemctl enable mosquitto 4、修改配置文件 vim /etc/mosquitto/mosquitto.conf 监听端口,默认为1883,需要修改删除前面…...
双阶段目标检测算法:精确与效率的博弈
双阶段目标检测算法:精确与效率的博弈 目标检测是计算机视觉领域的一个核心任务,它涉及在图像或视频中识别和定位多个对象。双阶段目标检测算法是一种特殊的目标检测方法,它通过两个阶段来提高检测的准确性。本文将详细介绍双阶段目标检测算…...
Python量化交易策略
策略详情 按照1分k线图;跳过9:30点1分k线图不计算 买入;监控市面的可转债;当某1分涨幅大于x涨幅,一直重复x次,选择买入,符合x设置的条件只选择成交额最大的可转债买入(x要自定义&…...

为什么我感觉 C 语言在 Linux 下执行效率比 Windows 快得多?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!Windows的终端或者叫控制台…...

算法导论 总结索引 | 第四部分 第十六章:贪心算法
1、求解最优化问题的算法 通常需要经过一系列的步骤,在每个步骤都面临多种选择。对于许多最优化问题,使用动态规划算法求最优解有些杀鸡用牛刀了,可以使用更简单、更高效的算法 贪心算法(greedy algorithm)就是这样的算…...
用“文心一言”写的文章,看看AI写得怎么样?
零售连锁店的“支付结算”业务设计 在数字化浪潮的推动下,连锁店零售支付结算的设计愈发重要。一个优秀的支付结算设计不仅能够提升用户体验,还能增强品牌竞争力,进而促进销售增长。 本文将围绕一个具体的连锁店零售支付结算案例…...

企业消费采购成本和员工体验如何实现“鱼和熊掌“的兼得?
有企业说企业消费采购成本和员工体验的关系好比是“鱼和熊掌”,无法兼得? 要想控制好成本就一定要加强管控,但是加强管控以后,就会很难让员工获得满意的体验度。如果不加以管控,员工自由度增加了,往往就很难…...

发表EI论文相当于SCI几区?
EI(工程索引)本身并不进行分区,它是一个收录工程领域高质量文献的数据库,与SCI(科学引文索引)的分区制度不同。然而,在非正式的学术评价中,有时人们会将EI与SCI的分区进行比较。 虽…...

STFT短时傅里叶变换MTLAB简析
代码: 解释: 如果信号x有Nx个时间样本,短时傅里叶变换的结果矩阵s有k列; k的计算方式如图所示,M是窗函数的长度,L是重叠长度。 此符号是向下取整符号。 短时傅里叶变换的结果矩阵s的行数与参数‘FFTLength’…...
海致科技实施实习生面试
一、面试内容 注:此次是电话面试 1.是XX先生吗 2.你是有考虑转实施的吗? 3.请讲一下你对项目部署实施的理解和掌握 4.用过数据库,会编写SQL语句吗? 5.讲一下SQL的常用关键字 6.了解SQL中的函数吗?谈谈函数 7.多…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
Yii2项目自动向GitLab上报Bug
Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...
使用 uv 工具快速部署并管理 vLLM 推理环境
uv:现代 Python 项目管理的高效助手 uv:Rust 驱动的 Python 包管理新时代 在部署大语言模型(LLM)推理服务时,vLLM 是一个备受关注的方案,具备高吞吐、低延迟和对 OpenAI API 的良好兼容性。为了提高部署效…...