[单master节点k8s部署]19.监控系统构建(四)kube-state-metrics
kube-state-metrics 是一个Kubernetes的附加组件,它通过监听 Kubernetes API 服务器来收集和生成关于 Kubernetes 对象(如部署、节点和Pod等)的状态的指标。这些指标可供 Prometheus 进行抓取和存储,从而使你能够监控和分析Kubernetes集群的状态和性能。
之前介绍过node-exporter和cAdvisor,但是他们收集的指标和kube-state-metrics是不同的。
不同插件的指标
node_exporter的指标主要关注节点的CPU、内存、磁盘和网络利用率等指标,以及系统负载,I/O操作和运行进程数。cAdvisor是一个容器监控工具,集成在Kubelet中,关注容器的CPU、内存和网络的资源使用情况。这两种都是与运行状态直接相关的物理或虚拟资源的度量。
而kube-state-metrics指标则是记录部署中期望副本数与当前副本数、pod的生命周期状态、重启次数、服务端点的状态等。
在实际应用中,将这两类指标结合起来使用可以提供更全面的视图来监控和管理 Kubernetes 集群。使用 node_exporter 和 cAdvisor 的指标可以帮助理解节点和容器的性能瓶颈。使用 kube-state-metrics 的指标可以帮助理解集群中的工作负载如何分布,以及 Kubernetes 控制平面的健康状态。
kube-state-metrics部署
创建sa文件
因为这个插件需要和kubernetes API交互,所以需要权限。
apiVersion: v1
kind: ServiceAccount
metadata:name: kube-state-metricsnamespace: kube-system
创建role文件
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: kube-state-metrics
rules:
- apiGroups: [""]resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]verbs: ["list", "watch"]
- apiGroups: ["extensions"]resources: ["daemonsets", "deployments", "replicasets"]verbs: ["list", "watch"]
- apiGroups: ["apps"]resources: ["statefulsets"]verbs: ["list", "watch"]
- apiGroups: ["batch"]resources: ["cronjobs", "jobs"]verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]resources: ["horizontalpodautoscalers"]verbs: ["list", "watch"]
创建rolebinding
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: kube-state-metrics
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: kube-state-metrics
subjects:
- kind: ServiceAccountname: kube-state-metricsnamespace: kube-system
可以看到把之前创建的sa和clusterRole绑定在了一起。
[root@master prometheus]# kubectl get sa -n kube-system | grep kube-state-metrics
kube-state-metrics 1 43s
创建pod
[root@master prometheus]# cat kube-state-metrics-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:namespace: kube-systemname: kube-state-metrics
spec:replicas: 1selector:matchLabels:app: kube-state-metricstemplate:metadata:labels:app: kube-state-metricsspec:serviceAccountName: kube-state-metricscontainers:- name: kube-state-metricsimage: quay.io/coreos/kube-state-metrics:v1.9.0imagePullPolicy: IfNotPresentports:- containerPort: 8080
这里的deployment使用了之前定义的sa。可以看到pod成功启动,ip地址为:10.244.166.164
[root@master prometheus]# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
kube-state-metrics-57794dcf65-8wt8g 1/1 Running 0 110s 10.244.166.164 node1 <none> <none>
monitoring-grafana-5bb6bb7867-9j2xb 1/1 Running 0 24h 10.244.166.160 node1 <none> <none>
创建service
[root@master prometheus]# cat kube-state-metrics-service.yaml
apiVersion: v1
kind: Service
metadata:annotations:prometheus.io/scrape: 'true'name: kube-state-metricsnamespace: kube-systemlabels:app: kube-state-metrics
spec:type: NodePortports:- name: kube-state-metricsport: 8080protocol: TCPselector:app: kube-state-metrics
[root@master prometheus]# kubectl get svc -n kube-system -owide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 19d k8s-app=kube-dns
kube-state-metrics NodePort 10.106.104.112 <none> 8080:31711/TCP 10s app=kube-state-metrics
monitoring-grafana NodePort 10.110.10.133 <none> 80:31519/TCP 24h k8s-app=grafana
此时查看Prometheus,可以看到endpoint里面已经识别到了这个pod

导入相应的json文件,在grafana里面也可以看到数据了。
相关文章:
[单master节点k8s部署]19.监控系统构建(四)kube-state-metrics
kube-state-metrics 是一个Kubernetes的附加组件,它通过监听 Kubernetes API 服务器来收集和生成关于 Kubernetes 对象(如部署、节点和Pod等)的状态的指标。这些指标可供 Prometheus 进行抓取和存储,从而使你能够监控和分析Kubern…...
字符串函数5-9题(30 天 Pandas 挑战)
字符串函数 1. 相关知识点1.5 字符串的长度条件判断1.6 apply映射操作1.7 python大小写转换1.8 正则表达式匹配2.9 包含字符串查询 2. 题目2.5 无效的推文2.6 计算特殊奖金2.7 修复表中的名字2.8 查找拥有有效邮箱的用户2.9 患某种疾病的患者 1. 相关知识点 1.5 字符串的长度条…...
【C语言题目】34.猜凶手
文章目录 作业标题作业内容2.解题思路3.具体代码 作业标题 猜凶手 作业内容 日本某地发生了一件谋杀案,警察通过排查确定杀人凶手必为4个嫌疑犯的一个。 以下为4个嫌疑犯的供词: A说:不是我。 B说:是C。 C说:是D。 D说ÿ…...
C++ 多进程多线程间通信
目录 一、进程间通信 1、管道(Pipe) 2、消息队列(Message Queue) 3、共享内存(Shared Memory) 4、信号量(Semaphore) 5、套接字(Socket) 6、信号&…...
怎么做防御系统IPS
入侵防御系统(IPS)是入侵检测系统(IDS)的增强版本,它不仅检测网络流量中的恶意活动,还能自动采取措施阻止这些活动。实现IPS的主要工具包括Snort和Suricata。以下是使用Snort和Suricata来实现IPS的详细步骤…...
达梦数据库的系统视图v$auditrecords
达梦数据库的系统视图v$auditrecords 在达梦数据库(DM Database)中,V$AUDITRECORDS 是专门用来存储和查询数据库审计记录的重要系统视图。这个视图提供了对所有审计事件的访问权限,包括操作类型、操作用户、时间戳、目标对象等信…...
Spring Boot与MyBatis-Plus:代码逆向生成指南
在Spring Boot项目中使用MyBatis-Plus进行代码逆向生成,可以通过MyBatis-Plus提供的代码生成器来快速生成实体类、Mapper接口、Service接口及其实现类等。以下是一个简单的示例步骤: 代码逆向生成 1.添加依赖: 在pom.xml文件中添加MyBati…...
【MySQL】mysql访问
mysql访问 1.引入MySQL 客户端库2.C/C 进行增删改3.查询的处理细节4.图形化界面访问数据库4.1下载MYSQL Workbench4.2MYSQL Workbench远程连接数据库 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励&a…...
(1)Jupyter Notebook 下载及安装
目录 1. Jupyter Notebook是什么?2. Jupyter Notebook特征3. 组成部分3.1 网页应用3.2 文档 4. 适用场景5. 利用Google Colab安装Jupyter Notebook3.1 什么是 Colab?3.2 访问 Google Colab3.3 新建笔记本 1. Jupyter Notebook是什么? 百度百科…...
监控平台zabbix对接grafana
本次博客基于监控平台zabbix介绍与部署-CSDN博客的环境下进行的 1、安装grafana并启动 添加一台虚拟机20.0.0.30 (1)系统初始化 [rootzx3 ~]# systemctl stop firewalld [rootzx3 ~]# setenforce 0 [rootzx3 ~]#(2)安装并启动…...
14-11 2024 年的 13 个 AI 趋势
2024 年的 13 个 AI 趋势 人工智能对环境的影响和平人工智能人工智能支持的问题解决和决策针对人工智能公司的诉讼2024 年美国总统大选与人工智能威胁人工智能、网络犯罪和社会工程威胁人工智能治疗孤独与对人工智能的情感依赖人工智能影响者中国争夺人工智能霸主地位人工智能…...
计算机大方向的选择
选专业要了解自己的兴趣所在。 即想要学习什么样的专业,如果有明确的专业意向,就可以有针对性地选择那些专业实力较强的院校。 2.如果没有明确的专业意向,可以优先考虑一下院校。 确定一下自己想要选择综合性院校还是理工类院校或是像财经或者…...
使用Qt Installer Framework在centos7中打包
文章目录 步骤 1: 安装Qt和Qt Installer Framework安装Qt安装Qt Installer Framework步骤 2: 创建项目目录结构步骤 3: 编写安装脚本配置文件(config/config.xml)Package 信息meta/package.xmldata 目录步骤 4: 编写安装脚本步骤 5: 生成安装程序总结在CentOS 7中使用Qt Inst…...
您的私人办公室!-----ONLYOFFICE8.1版本的桌面编辑器测评
随时随地创建并编辑文档,还可就其进行协作 ONLYOFFICE 文档是一款强大的在线编辑器,为您使用的平台提供文本文档、电子表格、演示文稿、表单和 PDF 编辑工具。 网页地址链接: https://www.onlyoffice.com/zh/office-suite.aspxhttps://www…...
点估计和参数分布的对比
点估计(Point Estimation)和 参数分布(Parameter Distribution)是统计学中两种不同的参数估计方法。 文章目录 点估计(Point Estimation)参数分布(Parameter Distribution)对比总结 …...
桌面保存的Word文件删除怎么找回?超实用的三个方法?
在日常工作和学习中,我们经常会使用Word文档进行文字编辑和文件保存。但是,有时由于操作失误或系统故障,我们会不小心将存放在电脑桌面重要的Word文件删除了。导致无法挽回的损失,但幸运的是,有一些方法可以帮助我们找…...
【leetcode】双指针算法题
文章目录 1.算法思想2.移动零3.复写零方法一方法二 4.快乐数5.盛水最多的容器方法一(暴力求解)方法二(左右指针) 6.有效三角形的个数方法一(暴力求解)方法二(左右指针) 7.两数之和8.…...
vue-router 源码分析——8.重定向
这是对vue-router 3 版本的源码分析。 本次分析会按以下方法进行: 按官网的使用文档顺序,围绕着某一功能点进行分析。这样不仅能学习优秀的项目源码,更能加深对项目的某个功能是如何实现的理解。这个对自己的技能提升,甚至面试时…...
CAN总线协议
CAN总线协议,全程为控制器局域网(Controller Area Network)协议,是一种用于实时应用的串行通讯协议。该协议由德国某公司专门为汽车行业开发,并逐渐成为一种标准,这是国际上应用最广泛的现场总线之一。 一…...
NLP篇1
场景:假设给你一篇文章。 目标:说白了,就是数学的分类。但是如何实现分类呢。下面将逐步一 一 分析与拆解。先把目标定好了和整体框架定好了。而不是只见树木而不见森林。 情感分类(好评、差评,中性) 整体…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
Android屏幕刷新率与FPS(Frames Per Second) 120hz
Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...
