机器学习——随机森林
随机森林

1、集成学习方法
通过构造多个模型组合来解决单一的问题。它的原理是生成多个分类器/模型,各自独立的学习和做出预测。这些预测最后会结合成组合预测,因此优于任何一个单分类得到的预测。
2、什么是随机森林?
随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
 随机:设训练集有N个样本,M个特征
 1)训练集随机 (采用bootstrap,即采用随机有放回抽样方法),从训练集里随机有放回的抽取N个样本
 2)特征随机生成(从M个特征中随机抽取m个特征, M >> m)
 森林:指由多棵决策树构成
3、API调用
在sklearn中,提供了随机森林的API,如下
sklearn.ensemble.RandomForestClassifier(n_estimator= 10, criterion='gini', max_depth=None, bootstrap = True,random_state =None, max_features='auto')
"""
n_estimator:预估器个数,即决策树数量
criterion:分割特征的测量方法,默认为基尼系数
max_depth:最大深度,即分类层数
bootstrap:默认为True,是否在构建树的时候有放回抽样
max_features:每个决策树的最大特征数量,如果设置为auto,则m=sqrt(M),M表示样本数量
"""
 
4、随机森林实例–预测泰坦尼克号生存乘客生存率
参数介绍:pclass表示客舱等级(间接反映乘客阶级),survived表示是否存活,后面依次表示姓名,年龄,乘客登船港口,家庭住址,房间号,船票1号码,boat表示是否登上救生艇,登上了则显示对应救生艇编号,空值表示没有登上,sex为性别
import pandas as pd
data = pd.read_csv(r'E:\Python_learning\py基础\machine_learning\titanic\titanic.csv')
# 筛选关键因素
 

# 选取特征列
features = data[['pclass','age','boat','sex']]
target = data['survived']
# 先查看有无缺失值
pd.isnull(features).any()   # 发现年龄、是否乘坐救生舱有空值
 

# 填补空缺值
features.fillna({'age':features['age'].mean()},inplace=True)
# 转换为字典
features = features.to_dict(orient='records')
# 使用字典特征抽取,转化成one-hot编码
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(features,target)
transfer = DictVectorizer(sparse=False)
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
from sklearn.ensemble import  RandomForestClassifier
from sklearn.model_selection import GridSearchCV
estimator = RandomForestClassifier()
para_dict={"n_estimators":[120,200,300,500,800,1200], 'max_depth':[5,8,15,25,30]}
estimator = GridSearchCV(estimator,  param_grid=para_dict, cv=4)
estimator.fit(x_train,y_train)
y_predict = estimator.predict(x_test)
print(f"模型准确率为:{estimator.score(x_test, y_test)}")
print("最佳参数为:", estimator.best_params_)
print("最佳准确率为:\n", estimator.best_score_)
print("最佳估计器为:\n", estimator.best_estimator_)
print("交叉验证结果:\n", estimator.cv_results_)
 

相关文章:
机器学习——随机森林
随机森林 1、集成学习方法 通过构造多个模型组合来解决单一的问题。它的原理是生成多个分类器/模型,各自独立的学习和做出预测。这些预测最后会结合成组合预测,因此优于任何一个单分类得到的预测。 2、什么是随机森林? 随机森林是一个包含…...
Java - JDK17语法新增特性(如果想知道Java - JDK17语法新增常见的特性的知识点,那么只看这一篇就足够了!)
前言:Java在2021年发布了最新的长期支持版本:JDK 17。这个版本引入了许多新的语法特性,提升了开发效率和代码可读性。本文将简要介绍一些常见的新特性,帮助开发者快速掌握并应用于实际开发中。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨…...
Linux-DNS
DNS域名解析服务 1.DNS介绍 DNS 是域名系统 (Domain Name System) 的缩写,是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。…...
使用gitlab的CI/CD实现logseq笔记自动发布为单页应用
使用gitlab的CI/CD实现logseq笔记自动发布为单页应用 使用gitlab的CI/CD实现logseq笔记自动发布为单页应用如何实现将logseq的笔记发布成网站使用 logseq-publish-docker 实现手动发布使用gitlab的CI/CD实现自动发布过程中的问题及解决参考资料 使用gitlab的CI/CD实现logseq笔记…...
云联壹云 FinOps:赋能某车企公有云成本管理与精细化运营
背景 某车企,世界 500 强企业,使用了大量的公有云资源,分布于多家公有云,月消费在千万级别。 业务线多且分散,相关的云消耗由一个核心团队进行管理,本次案例的内容将围绕这些云成本的管理展开的。 需求 …...
C#静态类与非静态类
1、静态类 静态类有几个重要的特点: 1)无法实例化:由于静态类不能被实例化,因此它不会占用对象内存。 2)静态成员:静态类只能包含静态成员(静态方法、静态属性、静态事件等)。 3&am…...
亚信安全:《2024云安全技术发展白皮书》
标签 云计算 安全威胁 云安全技术 网络攻击 数据保护 一句话总结 《云安全技术发展白皮书》全面分析了云计算安全威胁的演进,探讨了云安全技术的发展历程、当前应用和未来趋势,强调了构建全面云安全防护体系的重要性。 摘要 云安全威胁演进ÿ…...
GuLi商城-商品服务-API-品牌管理-云存储开通与使用
这里学习下阿里云对象存储 地址:对象存储 OSS_云存储服务_企业数据管理_存储-阿里云 登录支付宝账号,找到了我以前开通的阿里云对象存储 熟悉下API 文档中心 简介_对象存储(OSS)-阿里云帮助中心 我们将用这种方式上传阿里云OSS...
git 命令行初始化并上传项目
XXXX 为项目名称 1. 初始化 cd D:\XXXX git init git remote add origin http://账号192.168.1.231:8088/r/XXXX.git 2. 拉取项目,做本地合并 git pull origin master git fetch origin git merge origin/master 3. 添加注释,上传 git add . git c…...
Spring框架Mvc(2)
1.传递数组 代码示例 结果 2.集合参数存储并进行存储类似集合类 代码示例 postman进行测试 ,测试结果 3.用Json来对其进行数据的传递 (1)Json是一个经常使用的用来表示对象的字符串 (2)Json字符串在字符串和对象…...
Python学习笔记29:进阶篇(十八)常见标准库使用之质量控制中的数据清洗
前言 本文是根据python官方教程中标准库模块的介绍,自己查询资料并整理,编写代码示例做出的学习笔记。 根据模块知识,一次讲解单个或者多个模块的内容。 教程链接:https://docs.python.org/zh-cn/3/tutorial/index.html 质量控制…...
【LLM】一、利用ollama本地部署大模型
目录 前言 一、Ollama 简介 1、什么是Ollama 2、特点: 二、Windows部署 1.下载 2.安装 3.测试安装 4.模型部署: 5.注意 三、 Docker部署 1.docker安装 2.ollama镜像拉取 3.ollama运行容器 4.模型部署: 5.注意: 总结 前言…...
Java毕业设计 基于SSM vue新生报到系统小程序 微信小程序
Java毕业设计 基于SSM vue新生报到系统小程序 微信小程序 SSM 新生报到系统小程序 功能介绍 学生 登录 注册 忘记密码 首页 学校公告 录取信息 录取详情 师资力量 教师详情 收藏 评论 用户信息修改 宿舍安排 签到信息 在线缴费 教室分配 我的收藏管理 我要发贴 我的发贴 管理…...
玩转云服务:Oracle Cloud甲骨文永久免费云服务器注册及配置指南
上一篇,带大家分享了:如何薅一台腾讯云服务器。 不过,只有一个月免费额度,到期后需要付费使用。 相对而言,海外云厂商更加慷慨一些,比如微软Azure、甲骨文、亚马逊AWS等。 甲骨文2019年9月就推出了永久免…...
Zabbix——宏
目录 宏的类型 常用宏 定义和使用宏 宏的优先级 使用宏的示例 在 Zabbix 中,宏(Macros)是一个非常强大的功能,允许你在监控配置中使用动态变量。宏可以在各种配置项中使用,例如触发器、动作、通知、图形和模板等。…...
Unity 简单载具路线 Waypoint 导航
前言 在游戏开发和导航系统中,"waypoint" 是指路径中的一个特定位置或点。它通常用于定义一个物体或角色在场景中移动的目标位置或路径的一部分。通过一系列的 waypoints,可以指定复杂的移动路径和行为。以下是一些 waypoint 的具体用途&…...
科普文:微服务之服务网格Service Mesh
一、ServiceMesh概念 背景 随着业务的发展,传统单体应用的问题越来越严重: 单体应用代码库庞大,不易于理解和修改持续部署困难,由于单体应用各组件间依赖性强,只要其中任何一个组件发生更改,将重新部署整…...
第四十九章 解决 IRIS 中的 SOAP 问题 - 发送消息时出现问题
文章目录 第四十九章 解决 IRIS 中的 SOAP 问题 - 发送消息时出现问题 第四十九章 解决 IRIS 中的 SOAP 问题 - 发送消息时出现问题 如果在向 IRIS Web 服务或客户端发送或接收 SOAP 消息时遇到问题,请考虑以下常见场景列表: SOAP 消息可能包含极长的字…...
STM32-HAL-FATFS(文件系统)(没做完,stm32f103zet6(有大佬的可以在评论区说一下次板子为什么挂载失败了))
1STM32Cube配置 1-1配置时钟 1-2配置调试端口 1-3配置uart 1-4配置SDIO(注意参数)(其中他的初始化的异常函数给注释,SD卡文件写了) 配置了还要打开中断和DMA可在我的其他文章中看一样的 1-5配置FatFs (只改了图选中…...
线性代数基础概念:矩阵
目录 线性代数基础概念:矩阵 1. 矩阵的定义 2. 矩阵的运算 3. 矩阵的特殊类型 4. 矩阵的秩 5. 矩阵的初等变换 6. 矩阵的特征值与特征向量 7. 矩阵的应用 8. 矩阵总结 总结 线性代数基础概念:矩阵 矩阵是线性代数中的另一个重要概念࿰…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
