当前位置: 首页 > news >正文

DP:二维费用背包问题

文章目录

  • 🎵二维费用背包问题
    • 🎶引言
    • 🎶问题定义
    • 🎶动态规划思想
    • 🎶状态定义和状态转移方程
    • 🎶初始条件和边界情况
  • 🎵例题
    • 🎶1.一和零
    • 🎶2.盈利计划
  • 🎵总结

在这里插入图片描述

在这里插入图片描述

🎵二维费用背包问题

🎶引言

背包问题是算法中的经典问题之一,其变种繁多。本文将介绍二维费用背包问题及其解决方案。

🎶问题定义

二维费用背包问题可以描述为:给定 (N) 个物品,每个物品有两个费用和一个价值,在两种费用的限制下,如何选择物品使得总价值最大。

🎶动态规划思想

动态规划是解决背包问题的常用方法。通过定义合适的状态和状态转移方程,我们可以有效地解决二维费用背包问题。

🎶状态定义和状态转移方程

我们定义 dp[i][j][k] 表示前 i 个物品在费用1不超过 j 和费用2不超过 k 的情况下的最大价值。状态转移方程为:

d p [ i ] [ j ] [ k ] = max ⁡ ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − c o s t 1 [ i ] ] [ k − c o s t 2 [ i ] ] + v a l u e [ i ] ) dp[i][j][k] = \max(dp[i-1][j][k], dp[i-1][j-cost1[i]][k-cost2[i]] + value[i]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][jcost1[i]][kcost2[i]]+value[i])

🎶初始条件和边界情况

初始条件为 dp[0][j][k] = 0,表示没有物品时的最大价值为 0。边界条件需要根据实际问题进行处理。

🎵例题

🎶1.一和零

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题就是让我们找子集的长度,这个子集满足:当中的0不大于m个,当中的1不大于n个,最后返回最大的子集的长度,所以我们首先想到的是二维费用背包问题,因为有两个限制,这里的背包的限制就是0和1的个数的限制,这里的物品其实就是每个字符串。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前 i i i个物品中选择的所有组合中,满足0的个数不大于m,1的个数不大于n个的所有组合中子集长度最大的那个的长度。
状态转移方程:
在这里插入图片描述
这里的a和b代表的是当前i位置字符串中0和1分别的个数,所以我们在进行填表的时候应该遍历一下字符串,将当中的0和1分别记录一下,状态转移方程:

d p [ i ] [ j ] [ k ] = m a x ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − a ] [ k − b ] ) dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-a][k-b]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][ja][kb])

初始化:

代码:
未优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<vector<int>>> dp(sz + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = 0;j <= m;j++){for (int k = 0;k <= n;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= a && k >= b)dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - a][k - b] + 1);}}}return dp[sz][m][n];}
};

滚动数组优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = m;j >=a;j--)for (int k = n;k >=b;k--)dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}return dp[m][n];}
};

运行结果:
在这里插入图片描述

🎶2.盈利计划

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题每个group对应一个profit,下标是对应的。
在这里插入图片描述
根据上面的图片加上题目要求,我们可以得知,我们每次选择的利润必须大于给定的 m i n P r o f i t minProfit minProfit然后每次需要的人口不能超过 n n n,最后求出满足这个条件的所有组合有多少种。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前i个工作计划中选择,人数不超过i的,但是盈利大于k的所有组合数的总和。
状态转移方程:
第一种状态:不选择i位置, d p [ i − 1 ] [ j ] [ k ] dp[i-1][j][k] dp[i1][j][k]

第二种状态:选择i位置,首先考虑二维 d p [ i − 1 ] [ j − g r o u p [ i ] ] dp[i-1][j-group[i]] dp[i1][jgroup[i]]这里我们考虑一下 j − g r o u p [ i ] ≤ 0 j-group[i]\leq0 jgroup[i]0是否成立将group[i]移到右边去可以得到: j ≤ g r o u p [ i ] j\leq group[i] jgroup[i]这个是什么意思呢?表示i工作需要的人口是大于总人口j的,所以这肯定是不可能的,所以这里中只能是 j − g r o u p [ i ] ≥ 0 j-group[i]\geq0 jgroup[i]0,我们再来考虑三维的: d p [ i − 1 ] [ j − g r o u p [ i ] ] [ k − p r o f i t [ i ] ] dp[i-1][j-group[i]][k-profit[i]] dp[i1][jgroup[i]][kprofit[i]]我们来考虑 k − p r o f i t [ i ] ≤ 0 k-profit[i]\leq0 kprofit[i]0是否成立,首先我们还是继续移一下项: k ≤ p r o f i t [ i ] k \leq profit[i] kprofit[i]这里k表示总的利润,profit表示当前工作产出的利润,所以这里的意思就表示无论前面总利润是多少,这里都都能满足当前的利润,所以我们只需要选择0即可,所以第二种状态:

d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i1][jgroup[i]][max(0,kprofit[i])]

最后这两种状态的总和就是当前状态的所有组合的总和:

d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j ] [ k ] + d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i][j][k]=dp[i-1][j][k]+dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i][j][k]=dp[i1][j][k]+dp[i1][jgroup[i]][max(0,kprofit[i])]

代码:
未优化的代码:

class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {int len = group.size();int MOD = 1e9 + 7;vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(minProfit + 1)));for (int j = 0;j <= n;j++){dp[0][j][0] = 1;}for (int i = 1;i <= len;i++){for (int j = 0;j <= n;j++){for (int k = 0;k <= minProfit;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= group[i-1])dp[i][j][k] += dp[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])];dp[i][j][k] %= MOD;}}}return dp[len][n][minProfit];}
};

优化过后的代码:

int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) 
{int len = group.size();int MOD = 1e9 + 7;vector<vector<int>> dp(n + 1, vector<int>(minProfit + 1));for (int j = 0;j <= n;j++)dp[j][0] = 1;for (int i = 1;i <= len;i++)for (int j = n;j >= group[i - 1];j--)for (int k = 0;k <= minProfit;k++){dp[j][k] += dp[j - group[i - 1]][max(0, k - profit[i - 1])];dp[j][k] %= MOD;}return dp[n][minProfit];
}

运行结果:
在这里插入图片描述

🎵总结

通过本文的学习,我们了解了二维费用背包问题的基本概念和解决方法。与传统的单一费用背包问题不同,二维费用背包问题在解决时需要同时考虑两种费用的限制,这使得问题更具挑战性,但也更贴近实际应用场景。我们通过动态规划的方法,逐步构建状态转移方程,并利用二维数组来存储中间结果,从而实现了对问题的高效求解。

在实际应用中,掌握二维费用背包问题的解决思路,可以帮助我们在资源分配、投资组合等多方面优化决策。希望通过本次的学习,大家不仅能够掌握相关的算法技巧,还能够举一反三,灵活应用于更多复杂的优化问题中。

今后,我们将继续探讨更为复杂的动态规划问题,进一步提升算法设计和问题求解能力。谢谢大家的阅读,希望本文对你有所帮助。

相关文章:

DP:二维费用背包问题

文章目录 &#x1f3b5;二维费用背包问题&#x1f3b6;引言&#x1f3b6;问题定义&#x1f3b6;动态规划思想&#x1f3b6;状态定义和状态转移方程&#x1f3b6;初始条件和边界情况 &#x1f3b5;例题&#x1f3b6;1.一和零&#x1f3b6;2.盈利计划 &#x1f3b5;总结 &#x1…...

C语言标准库中的函数

由于C语言标准库中的函数非常多&#xff0c;我将按类别列出一些常见函数及其作用。请注意&#xff0c;这里不可能列出所有函数&#xff0c;但我会尽量覆盖主要的类别和函数。 ### 标准输入输出 - printf: 格式化输出到标准输出&#xff08;通常是屏幕&#xff09;。 - scanf: …...

Qt5.9.9 关于界面拖动导致QModbusRTU(QModbusTCP没有测试过)离线的问题

问题锁定 参考网友的思路&#xff1a; Qt5.9 Modbus request timeout 0x5异常解决 网友认为是Qt的bug&#xff0c; 我也认同&#xff1b;网友认为可以更新模块&#xff0c; 我也认同&#xff0c; 我也编译了Qt5.15.0的code并成功安装到Qt5.9.9中进行使用&#xff0c;界面拖…...

API的定义理解

前言 在程序员的日常工作中&#xff0c;“API”这个词在程序员的口中重复的次数&#xff0c;绝对是名列前茅的。 但是对刚开始工作的新人来说&#xff0c;API这个概念还是比较模糊。 确实&#xff0c;API这个概念是随着语义环境而不一样的&#xff0c;所以会让人迷惑。 下面…...

启航IT之旅:高考假期预习指南

标题&#xff1a;启航IT之旅&#xff1a;高考假期预习指南 随着高考的落幕&#xff0c;许多有志于IT领域的学子们即将踏上新的学习旅程。这个假期&#xff0c;是他们探索IT世界的黄金时期。本文将为准IT新生们提供一份全面的预习指南&#xff0c;帮助他们为未来的学习和职业生…...

HarmonyOS开发:循环渲染ForEach

需求&#xff1a; 创建多个列表组件&#xff0c;并实现点赞功能 语言&#xff1a; ArkTS 平台&#xff1a; DevEco Studio ForEach 接口描述 ForEach( arr: Array, itemGenerator: (item: Object, index: number) > void, keyGenerator?: (item: Object, index: number) &…...

构建工程化:多种不同的工程体系如何编写MakeFile

源码分析 核心MakeFile 这个 Makefile 是一个复杂的构建脚本&#xff0c;用于管理和构建一个大型项目。它包括多个目标、条件判断和递归调用 make 命令来处理多个子项目和子目录。让我们逐部分进行详细解析。 伪目标和变量定义 .PHONY: all clean install build test init.…...

聚焦从业人员疏散逃生避险意识能力提升,推动生产经营单位每年至少组织开展(疏散逃生演练,让全体从业人员熟知逃生通道、安全出口及应急处置要求,形成常态化机制。

聚焦从业人员疏散逃生避险意识能力提升&#xff0c;推动生产经营单位每年至少组织开展(疏散逃生演练&#xff0c;让全体从业人员熟知逃生通道、安全出口及应急处置要求&#xff0c;形成常态化机制。完整试题答案查看 A.三次B.两次C.一次 综合运用“四不两直”、明察暗访、 ()、…...

【手机取证】如何使用360加固助手给apk加固

文章关键词&#xff1a;手机取证、电子数据取证、数据恢复 一、前言 APP加固是对APP代码逻辑的一种保护。原理是将应用文件进行某种形式的转换&#xff0c;包括不限于隐藏&#xff0c;混淆&#xff0c;加密等操作&#xff0c;进一步保护软件的利益不受损坏&#xff0c;下面给…...

Vue的介绍

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

MySql数据库常用指令合集

MySql数据库常用指令合集 一、创建数据库db11.创建表 字段---表头 student_no,username,sex2.新增单条插入多条插入3.删除4.更新5.查询5.1.查询该表全部信息5.2.查询该表中username&#xff0c;并且要求名字为zhangsan性别女&#xff0c;还可以用&#xff08;or&#xff09; 6.…...

ArcGIS Pro SDK (七)编辑 13 注解

ArcGIS Pro SDK &#xff08;七&#xff09;编辑 13 注解 文章目录 ArcGIS Pro SDK &#xff08;七&#xff09;编辑 13 注解1 注释构建工具2 以编程方式启动编辑批注3 更新批注文本4 修改批注形状5 修改批注文本图形6 接地到网格 环境&#xff1a;Visual Studio 2022 .NET6 …...

模拟面试001-Java开发工程师+简历+问题+回答

模拟面试001-Java开发工程师简历问题回答 目录 模拟面试001-Java开发工程师简历问题回答面试简历面试官题问求职者回答1. 关于Java编程和技术栈2. 关于XX在线购物平台项目3. 关于XX企业资源规划系统项目4. 团队协作与项目管理5. 个人发展与职业规划 参考资料 面试简历 **个人信…...

微信小程序 ——入门介绍及简单的小程序编写

目录 一、小程序入门 1.1 什么是小程序 1.2 小程序的优点 1.3 小程序注册 1.4 安装开发工具 1.5 创建第一个小程序 二、小程序目录结构及入门案例 2.1 目录结构 2.2 入门案例 2.2.1 创建界面 2.2.2 设置标题 2.2.3 编写WXML文件 2.2.4 编写JS文件 2.2.5 编写WXSS…...

ubuntu20.04安装lio-sam

1、依赖功能包安装 sudo apt install ros-noetic-robot-state-publisher sudo apt-get install ros-noetic-robot-localization libmetis-dev 2、boost版本 boost版本查看&#xff1a;cat /usr/include/boost/version.hpp | grep "BOOST_LIB_VERSION" boost版本为1.…...

Kafka系列之Kafka知识超强总结

一、Kafka简介 Kafka是什么 Kafka是一种高吞吐量的分布式发布订阅消息系统&#xff08;消息引擎系统&#xff09;&#xff0c;它可以处理消费者在网站中的所有动作流数据。 这种动作&#xff08;网页浏览&#xff0c; 搜索和其他用户的行动&#xff09;是在现代网络上的许多社…...

第32讲:K8S集群与Cephfs文件系统集成

文章目录 1.在K8S环境下RBD与Cephfs的使用对比2.Cephfs环境介绍3.在Ceph集群中为K8S创建单独Cephfs文件系统和认证用户3.1.创建一个K8S使用的Cephfs文件系统3.2.将创建的Cephfs文件系统挂载到本地路径3.3.创建K8S连接Ceph集群使用的认证用户 4.K8S PV存储卷使用Cephfs文件系统4…...

服务器数据恢复—DS5300存储raid5阵列数据恢复案例

服务器存储数据恢复环境&#xff1a; 某单位一台某品牌DS5300存储&#xff0c;1个机头4个扩展柜&#xff0c;50块硬盘组建2组RAID5磁盘阵列&#xff08;一组raid5阵列有27块成员盘&#xff0c;存放Oracle数据库文件&#xff1b;另外一组raid5阵列有23块成员盘&#xff09;。存储…...

使用Ubuntu 22.04安装Frappe-Bench【二】

系列文章目录 第一章 使用VMware创建Ubuntu 22.04【一】 文章目录 系列文章目录前言什么是Frappe-Bench&#xff1f;使用安装ERPNext能实现什么效果&#xff1f; 官网给了一个说明 一、使用Ubuntu 22.04安装Frappe-Bench一、安装要求二、安装命令三、 可能出现问题 总结 前言 …...

MySQL增删改查

1.创建数据库&#xff1a; 使用CREATE DATABASE语句 CREATE DATABASE school;show databases; 列出MySQL数据库管理系统的数据库列表 2.切换数据库&#xff1a; 使用USE语句选择要操作的数据库 USE school&#xff1b;select database (); 当前所在库mysql> select…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...