当前位置: 首页 > news >正文

DP:二维费用背包问题

文章目录

  • 🎵二维费用背包问题
    • 🎶引言
    • 🎶问题定义
    • 🎶动态规划思想
    • 🎶状态定义和状态转移方程
    • 🎶初始条件和边界情况
  • 🎵例题
    • 🎶1.一和零
    • 🎶2.盈利计划
  • 🎵总结

在这里插入图片描述

在这里插入图片描述

🎵二维费用背包问题

🎶引言

背包问题是算法中的经典问题之一,其变种繁多。本文将介绍二维费用背包问题及其解决方案。

🎶问题定义

二维费用背包问题可以描述为:给定 (N) 个物品,每个物品有两个费用和一个价值,在两种费用的限制下,如何选择物品使得总价值最大。

🎶动态规划思想

动态规划是解决背包问题的常用方法。通过定义合适的状态和状态转移方程,我们可以有效地解决二维费用背包问题。

🎶状态定义和状态转移方程

我们定义 dp[i][j][k] 表示前 i 个物品在费用1不超过 j 和费用2不超过 k 的情况下的最大价值。状态转移方程为:

d p [ i ] [ j ] [ k ] = max ⁡ ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − c o s t 1 [ i ] ] [ k − c o s t 2 [ i ] ] + v a l u e [ i ] ) dp[i][j][k] = \max(dp[i-1][j][k], dp[i-1][j-cost1[i]][k-cost2[i]] + value[i]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][jcost1[i]][kcost2[i]]+value[i])

🎶初始条件和边界情况

初始条件为 dp[0][j][k] = 0,表示没有物品时的最大价值为 0。边界条件需要根据实际问题进行处理。

🎵例题

🎶1.一和零

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题就是让我们找子集的长度,这个子集满足:当中的0不大于m个,当中的1不大于n个,最后返回最大的子集的长度,所以我们首先想到的是二维费用背包问题,因为有两个限制,这里的背包的限制就是0和1的个数的限制,这里的物品其实就是每个字符串。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前 i i i个物品中选择的所有组合中,满足0的个数不大于m,1的个数不大于n个的所有组合中子集长度最大的那个的长度。
状态转移方程:
在这里插入图片描述
这里的a和b代表的是当前i位置字符串中0和1分别的个数,所以我们在进行填表的时候应该遍历一下字符串,将当中的0和1分别记录一下,状态转移方程:

d p [ i ] [ j ] [ k ] = m a x ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − a ] [ k − b ] ) dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-a][k-b]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][ja][kb])

初始化:

代码:
未优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<vector<int>>> dp(sz + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = 0;j <= m;j++){for (int k = 0;k <= n;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= a && k >= b)dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - a][k - b] + 1);}}}return dp[sz][m][n];}
};

滚动数组优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = m;j >=a;j--)for (int k = n;k >=b;k--)dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}return dp[m][n];}
};

运行结果:
在这里插入图片描述

🎶2.盈利计划

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题每个group对应一个profit,下标是对应的。
在这里插入图片描述
根据上面的图片加上题目要求,我们可以得知,我们每次选择的利润必须大于给定的 m i n P r o f i t minProfit minProfit然后每次需要的人口不能超过 n n n,最后求出满足这个条件的所有组合有多少种。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前i个工作计划中选择,人数不超过i的,但是盈利大于k的所有组合数的总和。
状态转移方程:
第一种状态:不选择i位置, d p [ i − 1 ] [ j ] [ k ] dp[i-1][j][k] dp[i1][j][k]

第二种状态:选择i位置,首先考虑二维 d p [ i − 1 ] [ j − g r o u p [ i ] ] dp[i-1][j-group[i]] dp[i1][jgroup[i]]这里我们考虑一下 j − g r o u p [ i ] ≤ 0 j-group[i]\leq0 jgroup[i]0是否成立将group[i]移到右边去可以得到: j ≤ g r o u p [ i ] j\leq group[i] jgroup[i]这个是什么意思呢?表示i工作需要的人口是大于总人口j的,所以这肯定是不可能的,所以这里中只能是 j − g r o u p [ i ] ≥ 0 j-group[i]\geq0 jgroup[i]0,我们再来考虑三维的: d p [ i − 1 ] [ j − g r o u p [ i ] ] [ k − p r o f i t [ i ] ] dp[i-1][j-group[i]][k-profit[i]] dp[i1][jgroup[i]][kprofit[i]]我们来考虑 k − p r o f i t [ i ] ≤ 0 k-profit[i]\leq0 kprofit[i]0是否成立,首先我们还是继续移一下项: k ≤ p r o f i t [ i ] k \leq profit[i] kprofit[i]这里k表示总的利润,profit表示当前工作产出的利润,所以这里的意思就表示无论前面总利润是多少,这里都都能满足当前的利润,所以我们只需要选择0即可,所以第二种状态:

d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i1][jgroup[i]][max(0,kprofit[i])]

最后这两种状态的总和就是当前状态的所有组合的总和:

d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j ] [ k ] + d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i][j][k]=dp[i-1][j][k]+dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i][j][k]=dp[i1][j][k]+dp[i1][jgroup[i]][max(0,kprofit[i])]

代码:
未优化的代码:

class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {int len = group.size();int MOD = 1e9 + 7;vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(minProfit + 1)));for (int j = 0;j <= n;j++){dp[0][j][0] = 1;}for (int i = 1;i <= len;i++){for (int j = 0;j <= n;j++){for (int k = 0;k <= minProfit;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= group[i-1])dp[i][j][k] += dp[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])];dp[i][j][k] %= MOD;}}}return dp[len][n][minProfit];}
};

优化过后的代码:

int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) 
{int len = group.size();int MOD = 1e9 + 7;vector<vector<int>> dp(n + 1, vector<int>(minProfit + 1));for (int j = 0;j <= n;j++)dp[j][0] = 1;for (int i = 1;i <= len;i++)for (int j = n;j >= group[i - 1];j--)for (int k = 0;k <= minProfit;k++){dp[j][k] += dp[j - group[i - 1]][max(0, k - profit[i - 1])];dp[j][k] %= MOD;}return dp[n][minProfit];
}

运行结果:
在这里插入图片描述

🎵总结

通过本文的学习,我们了解了二维费用背包问题的基本概念和解决方法。与传统的单一费用背包问题不同,二维费用背包问题在解决时需要同时考虑两种费用的限制,这使得问题更具挑战性,但也更贴近实际应用场景。我们通过动态规划的方法,逐步构建状态转移方程,并利用二维数组来存储中间结果,从而实现了对问题的高效求解。

在实际应用中,掌握二维费用背包问题的解决思路,可以帮助我们在资源分配、投资组合等多方面优化决策。希望通过本次的学习,大家不仅能够掌握相关的算法技巧,还能够举一反三,灵活应用于更多复杂的优化问题中。

今后,我们将继续探讨更为复杂的动态规划问题,进一步提升算法设计和问题求解能力。谢谢大家的阅读,希望本文对你有所帮助。

相关文章:

DP:二维费用背包问题

文章目录 &#x1f3b5;二维费用背包问题&#x1f3b6;引言&#x1f3b6;问题定义&#x1f3b6;动态规划思想&#x1f3b6;状态定义和状态转移方程&#x1f3b6;初始条件和边界情况 &#x1f3b5;例题&#x1f3b6;1.一和零&#x1f3b6;2.盈利计划 &#x1f3b5;总结 &#x1…...

C语言标准库中的函数

由于C语言标准库中的函数非常多&#xff0c;我将按类别列出一些常见函数及其作用。请注意&#xff0c;这里不可能列出所有函数&#xff0c;但我会尽量覆盖主要的类别和函数。 ### 标准输入输出 - printf: 格式化输出到标准输出&#xff08;通常是屏幕&#xff09;。 - scanf: …...

Qt5.9.9 关于界面拖动导致QModbusRTU(QModbusTCP没有测试过)离线的问题

问题锁定 参考网友的思路&#xff1a; Qt5.9 Modbus request timeout 0x5异常解决 网友认为是Qt的bug&#xff0c; 我也认同&#xff1b;网友认为可以更新模块&#xff0c; 我也认同&#xff0c; 我也编译了Qt5.15.0的code并成功安装到Qt5.9.9中进行使用&#xff0c;界面拖…...

API的定义理解

前言 在程序员的日常工作中&#xff0c;“API”这个词在程序员的口中重复的次数&#xff0c;绝对是名列前茅的。 但是对刚开始工作的新人来说&#xff0c;API这个概念还是比较模糊。 确实&#xff0c;API这个概念是随着语义环境而不一样的&#xff0c;所以会让人迷惑。 下面…...

启航IT之旅:高考假期预习指南

标题&#xff1a;启航IT之旅&#xff1a;高考假期预习指南 随着高考的落幕&#xff0c;许多有志于IT领域的学子们即将踏上新的学习旅程。这个假期&#xff0c;是他们探索IT世界的黄金时期。本文将为准IT新生们提供一份全面的预习指南&#xff0c;帮助他们为未来的学习和职业生…...

HarmonyOS开发:循环渲染ForEach

需求&#xff1a; 创建多个列表组件&#xff0c;并实现点赞功能 语言&#xff1a; ArkTS 平台&#xff1a; DevEco Studio ForEach 接口描述 ForEach( arr: Array, itemGenerator: (item: Object, index: number) > void, keyGenerator?: (item: Object, index: number) &…...

构建工程化:多种不同的工程体系如何编写MakeFile

源码分析 核心MakeFile 这个 Makefile 是一个复杂的构建脚本&#xff0c;用于管理和构建一个大型项目。它包括多个目标、条件判断和递归调用 make 命令来处理多个子项目和子目录。让我们逐部分进行详细解析。 伪目标和变量定义 .PHONY: all clean install build test init.…...

聚焦从业人员疏散逃生避险意识能力提升,推动生产经营单位每年至少组织开展(疏散逃生演练,让全体从业人员熟知逃生通道、安全出口及应急处置要求,形成常态化机制。

聚焦从业人员疏散逃生避险意识能力提升&#xff0c;推动生产经营单位每年至少组织开展(疏散逃生演练&#xff0c;让全体从业人员熟知逃生通道、安全出口及应急处置要求&#xff0c;形成常态化机制。完整试题答案查看 A.三次B.两次C.一次 综合运用“四不两直”、明察暗访、 ()、…...

【手机取证】如何使用360加固助手给apk加固

文章关键词&#xff1a;手机取证、电子数据取证、数据恢复 一、前言 APP加固是对APP代码逻辑的一种保护。原理是将应用文件进行某种形式的转换&#xff0c;包括不限于隐藏&#xff0c;混淆&#xff0c;加密等操作&#xff0c;进一步保护软件的利益不受损坏&#xff0c;下面给…...

Vue的介绍

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

MySql数据库常用指令合集

MySql数据库常用指令合集 一、创建数据库db11.创建表 字段---表头 student_no,username,sex2.新增单条插入多条插入3.删除4.更新5.查询5.1.查询该表全部信息5.2.查询该表中username&#xff0c;并且要求名字为zhangsan性别女&#xff0c;还可以用&#xff08;or&#xff09; 6.…...

ArcGIS Pro SDK (七)编辑 13 注解

ArcGIS Pro SDK &#xff08;七&#xff09;编辑 13 注解 文章目录 ArcGIS Pro SDK &#xff08;七&#xff09;编辑 13 注解1 注释构建工具2 以编程方式启动编辑批注3 更新批注文本4 修改批注形状5 修改批注文本图形6 接地到网格 环境&#xff1a;Visual Studio 2022 .NET6 …...

模拟面试001-Java开发工程师+简历+问题+回答

模拟面试001-Java开发工程师简历问题回答 目录 模拟面试001-Java开发工程师简历问题回答面试简历面试官题问求职者回答1. 关于Java编程和技术栈2. 关于XX在线购物平台项目3. 关于XX企业资源规划系统项目4. 团队协作与项目管理5. 个人发展与职业规划 参考资料 面试简历 **个人信…...

微信小程序 ——入门介绍及简单的小程序编写

目录 一、小程序入门 1.1 什么是小程序 1.2 小程序的优点 1.3 小程序注册 1.4 安装开发工具 1.5 创建第一个小程序 二、小程序目录结构及入门案例 2.1 目录结构 2.2 入门案例 2.2.1 创建界面 2.2.2 设置标题 2.2.3 编写WXML文件 2.2.4 编写JS文件 2.2.5 编写WXSS…...

ubuntu20.04安装lio-sam

1、依赖功能包安装 sudo apt install ros-noetic-robot-state-publisher sudo apt-get install ros-noetic-robot-localization libmetis-dev 2、boost版本 boost版本查看&#xff1a;cat /usr/include/boost/version.hpp | grep "BOOST_LIB_VERSION" boost版本为1.…...

Kafka系列之Kafka知识超强总结

一、Kafka简介 Kafka是什么 Kafka是一种高吞吐量的分布式发布订阅消息系统&#xff08;消息引擎系统&#xff09;&#xff0c;它可以处理消费者在网站中的所有动作流数据。 这种动作&#xff08;网页浏览&#xff0c; 搜索和其他用户的行动&#xff09;是在现代网络上的许多社…...

第32讲:K8S集群与Cephfs文件系统集成

文章目录 1.在K8S环境下RBD与Cephfs的使用对比2.Cephfs环境介绍3.在Ceph集群中为K8S创建单独Cephfs文件系统和认证用户3.1.创建一个K8S使用的Cephfs文件系统3.2.将创建的Cephfs文件系统挂载到本地路径3.3.创建K8S连接Ceph集群使用的认证用户 4.K8S PV存储卷使用Cephfs文件系统4…...

服务器数据恢复—DS5300存储raid5阵列数据恢复案例

服务器存储数据恢复环境&#xff1a; 某单位一台某品牌DS5300存储&#xff0c;1个机头4个扩展柜&#xff0c;50块硬盘组建2组RAID5磁盘阵列&#xff08;一组raid5阵列有27块成员盘&#xff0c;存放Oracle数据库文件&#xff1b;另外一组raid5阵列有23块成员盘&#xff09;。存储…...

使用Ubuntu 22.04安装Frappe-Bench【二】

系列文章目录 第一章 使用VMware创建Ubuntu 22.04【一】 文章目录 系列文章目录前言什么是Frappe-Bench&#xff1f;使用安装ERPNext能实现什么效果&#xff1f; 官网给了一个说明 一、使用Ubuntu 22.04安装Frappe-Bench一、安装要求二、安装命令三、 可能出现问题 总结 前言 …...

MySQL增删改查

1.创建数据库&#xff1a; 使用CREATE DATABASE语句 CREATE DATABASE school;show databases; 列出MySQL数据库管理系统的数据库列表 2.切换数据库&#xff1a; 使用USE语句选择要操作的数据库 USE school&#xff1b;select database (); 当前所在库mysql> select…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...