当前位置: 首页 > news >正文

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法

K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。
步骤:
1、随机设置K个特征空间内的点作为初始聚类中心;
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;
3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);
4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。
means表示寻找新的聚类中心点是采用特征平均值确定。

2、K-means图解

具体演示视频可查看(B站UP主:KnowingAI知智)
若我们手上有一些水果,我们希望对它们进行分类,假设分为两类,则此时K=2。
step1:随机选取两个样本点作为聚类中心点centrol
在这里插入图片描述

step2:计算其他每个样本与聚类中心centrol的距离,距离谁近就归为哪类,一般采用欧氏距离。
在这里插入图片描述

step3:根据已分类的结果,重新计算聚类中心,聚类中心是已分类的所有样本的平均值(means)

在这里插入图片描述
然后重复之前的步骤,重新计算距离进行划分,直到某一次计算聚类中心点和上次相同,则聚类结束。

3、聚类算法优缺点分析

聚类算法不需要手动设置标签,故属于无监督学习,相比于监督学习,它更加简单、易于理解,但是准确率方面不如监督学习。

4、K-Means()算法实现案例

API调用:

API:sklearn.cluster.KMeans(n_clusters=8, init='k=means++')
n_cluster:初始聚类中心数量,即K值
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
# 生成示例数据,100个二维数据,横坐标纵坐标都在0-1范围内
X = np.random.rand(100, 2)
# 创建K-means模型
kmeans = KMeans(n_clusters=3)
# 训练模型
kmeans.fit(X)
# 获取聚类结果
labels = kmeans.labels_
# 获取每个数据点的簇标签。labels_是一个数组,表示每个数据点所属的簇的索引。
centroids = kmeans.cluster_centers_
# 获取每个簇的质心坐标。cluster_centers_是一个形状为(n_clusters, n_features)的数组,表示每个簇的质心位置。
# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(centroids[:, 0], centroids[:, 1], s=300, c='red', marker='x')
plt.show()

在这里插入图片描述

5、聚类效果的评估(轮廓系数评估法)

内部距离最小化,外部距离最大化
轮廓系数: S C i = b i − a i m a x ( b i , a i ) SCi=\frac{b_i-a_i}{max(b_i,a_i)} SCi=max(bi,ai)biai
b i b_i bi:一个簇内某个样本到其他簇的所有样本距离的最小值
a i a_i ai:一个簇内某个样本到本身簇内所有样本距离的平均值
b i > > a i b_i>>a_i bi>>ai 此时 S C i ≈ 1 SCi≈1 SCi1 效果好
b i < < a i b_i<<a_i bi<<ai 此时 S C i ≈ − 1 SCi≈-1 SCi1 效果差
轮廓系数取值范围在 ( − 1 , 1 ) (-1,1) (1,1),越接近 1 1 1,聚类效果越好,越接近 − 1 -1 1,聚类效果越差

from sklearn.metrics import silhouette_score  #计算轮廓系数,传入样本点和分类标签

如上例中,加上如下代码

from sklearn.metrics import silhouette_score
score = silhouette_score(X,labels)
print(f"轮廓系数为{score}")

轮廓系数为0.3873688462341751,分类效果一般。可以加一个循环找到一定范围内最优的K值,此处用轮廓系数衡量

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
import matplotlib.pyplot as plt
# 生成示例数据,100个二维数据,横坐标纵坐标都在0-1范围内
X = np.random.rand(100, 2)
# 创建K-means模型
best_score=0
for k in range(2,11):kmeans = KMeans(n_clusters=k)# 训练模型kmeans.fit(X)# 获取聚类结果labels = kmeans.labels_# 获取每个数据点的簇标签。labels_是一个数组,表示每个数据点所属的簇的索引。centroids = kmeans.cluster_centers_score = silhouette_score(X,labels)if score > best_score:best_score = scorebest_k = k
print(f'最佳簇数: {best_k}, 轮廓系数: {best_score}')
# 最佳簇数: 4, 轮廓系数: 0.42684837185343705

相关文章:

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法 K表示超参数个数&#xff0c;如分成几个类别&#xff0c;K值就取多少。若无需求&#xff0c;可使用网格搜索找到最佳的K。 步骤&#xff1a; 1、随机设置K个特征空间内的点作为初始聚类中心&#xff1b; 2、对于其他每个点计算到K个中心的距离&#xff0c;…...

强化学习-6 DDPG、PPO、SAC算法

文章目录 1 DPG方法2 DDPG算法3 DDPG算法的优缺点4 TD3算法4.1 双Q网络4.2 延迟更新4.3 噪声正则 5 附15.1 Ornstein-Uhlenbeck (OU) 噪声5.1.1 定义5.1.2 特性5.1.3 直观理解5.1.4 数学性质5.1.5 代码示例5.1.6 总结 6 重要性采样7 PPO算法8 附28.1 重要性采样方差计算8.1.1 公…...

vue3实现多表头列表el-table,拖拽,鼠标滑轮滚动条优化

需求背景解决效果index.vue 需求背景 需要实现多表头列表的用户体验优化 解决效果 index.vue <!--/** * author: liuk * date: 2024-07-03 * describe:**** 多表头列表 */--> <template><el-table ref"tableRef" height"calc(100% - 80px)&qu…...

Micron近期发布了32Gb DDR5 DRAM

Micron Technology近期发布了一项内存技术的重大突破——一款32Gb DDR5 DRAM芯片&#xff0c;这项创新不仅将存储容量翻倍&#xff0c;还显著提升了针对人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;、高性能计算&#xff08;HPC&#xff09;以及数…...

SQL Server时间转换

第一种&#xff1a;format --转化成年月日 select format( GETDATE(),yyyy-MM-dd) --转化年月日&#xff0c;时分秒&#xff0c;这里的HH指24小时的&#xff0c;hh是12小时的 select format( GETDATE(),yyyy-MM-dd HH:mm:ss) --转化成时分秒的&#xff0c;这里就不一样的&…...

kubernetes集群部署:node节点部署和CRI-O运行时安装(三)

关于CRI-O Kubernetes最初使用Docker作为默认的容器运行时。然而&#xff0c;随着Kubernetes的发展和OCI标准的确立&#xff0c;社区开始寻找更专门化的解决方案&#xff0c;以减少复杂性和提高性能。CRI-O的主要目标是提供一个轻量级的容器运行时&#xff0c;它可以直接运行O…...

03:Spring MVC

文章目录 一&#xff1a;Spring MVC简介1&#xff1a;说说自己对于Spring MVC的了解&#xff1f;1.1&#xff1a;流程说明&#xff1a; 一&#xff1a;Spring MVC简介 Spring MVC就是一个MVC框架&#xff0c;Spring MVC annotation式的开发比Struts2方便&#xff0c;可以直接代…...

玩转springboot之springboot注册servlet

springboot注册servlet 有时候在springboot中依然需要注册servlet&#xff0c;filter&#xff0c;listener&#xff0c;就以servlet为例来进行说明&#xff0c;另外两个也都类似 使用WebServlet注解 在servlet3.0之后&#xff0c;servlet注册支持注解注册&#xff0c;而不需要在…...

推荐好玩的工具之OhMyPosh使用

解除禁止脚本 Set-ExecutionPolicy RemoteSigned 下载Oh My Posh winget install oh-my-posh 或者 Install-Module oh-my-posh -Scope AllUsers 下载Git提示 Install-Module posh-git -Scope CurrentUser 或者 Install-Module posh-git -Scope AllUser 下载命令提示 Install-Mo…...

pydub、ffmpeg 音频文件声道选择转换、采样率更改

快速查看音频通道数和每个通道能力判断具体哪个通道说话&#xff1b;一般能量大的那个算是说话 import wave from pydub import AudioSegment import numpy as npdef read_wav_file(file_path):with wave.open(file_path, rb) as wav_file:params wav_file.getparams()num_cha…...

0803实操-Windows Server系统管理

Windows Server系统管理 系统管理与基础配置 查看系统信息、更改计算机名称 网络配置 启用网络发现 Windows启用网络发现是指在网络设置中启用一个功能&#xff0c;该功能允许您的计算机在网络上识别和访问其他设备和计算机。具体来说&#xff0c;启用网络发现后&#xff…...

使用Java构建物联网应用的最佳实践

使用Java构建物联网应用的最佳实践 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 随着物联网&#xff08;IoT&#xff09;技术的快速发展&#xff0c;越来越…...

价格预言机的使用总结(一):Chainlink篇

文章首发于公众号&#xff1a;Keegan小钢 前言 价格预言机已经成为了 DeFi 中不可获取的基础设施&#xff0c;很多 DeFi 应用都需要从价格预言机来获取稳定可信的价格数据&#xff0c;包括借贷协议 Compound、AAVE、Liquity &#xff0c;也包括衍生品交易所 dYdX、PERP 等等。…...

【Pyhton】读取寄存器数据到MySQL数据库

目录 步骤 modsim32软件配置 Navicat for MySQL 代码实现 步骤 安装必要的库&#xff1a;确保安装了pymodbus和pymysql。 配置Modbus连接&#xff1a;设置Modbus从站的IP地址、端口&#xff08;对于TCP&#xff09;或串行通信参数&#xff08;对于RTU&#xff09;。 连接M…...

jmeter-beanshell学习3-beanshell获取请求报文和响应报文

前后两个报文&#xff0c;后面报文要用前面报文的响应结果&#xff0c;这个简单&#xff0c;正则表达式或者json提取器&#xff0c;都能实现。但是如果后面报文要用前面请求报文的内容&#xff0c;感觉有点难。最早时候把随机数写在自定义变量&#xff0c;前后两个接口都用这个…...

【C++】B树及其实现

写目录 一、B树的基本概念1.引入2.B树的概念 二、B树的实现1.B树的定义2.B树的查找3.B树的插入操作4.B树的删除5.B树的遍历6.B树的高度7.整体代码 三、B树和B*树1.B树2.B*树3.总结 一、B树的基本概念 1.引入 我们已经学习过二叉排序树、AVL树和红黑树三种树形查找结构&#x…...

C++(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例

C(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例 文章目录 C(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例1、概述2、实现效果3、主要代码4、源码地址 更多精彩内容&#x1f449;个人内容分类汇总 &#x1f448;&#x1f449;GIS开发 &#x1f448; 1、概述 支持多线程加…...

CTFShow的RE题(三)

数学不及格 strtol 函数 long strtol(char str, char **endptr, int base); 将字符串转换为长整型 就是解这个方程组了 主要就是 v4, v9的关系&#xff0c; 3v9-(v10v11v12)62d10d4673 v4 v12 v11 v10 0x13A31412F8C 得到 3*v9v419D024E75FF(1773860189695) 重点&…...

WordPress主题开发进群付费主题v1.1.2 多种引流方式

全新前端UI界面&#xff0c;多种前端交互特效让页面不再单调&#xff0c;进群页面群成员数&#xff0c;群成员头像名称&#xff0c;每次刷新页面随机更新不重复&#xff0c;最下面评论和点赞也是如此随机刷新不重复 进群页面简介&#xff0c;群聊名称&#xff0c;群内展示&…...

SAP中的 UPDATA TASK 和 BACKGROUND TASK

前言&#xff1a; 记录这篇文章起因是调查生产订单报工问题引申出来的一个问题&#xff0c;后来再次调查后了解了其中缘由&#xff0c;大概记录以下&#xff0c;如有不对&#xff0c;欢迎指正。问题原贴如下&#xff1a; SAP CO11N BAPI_PRODORDCONF_CREATE_TT连续报工异步更…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...