当前位置: 首页 > news >正文

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法

K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。
步骤:
1、随机设置K个特征空间内的点作为初始聚类中心;
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;
3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);
4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。
means表示寻找新的聚类中心点是采用特征平均值确定。

2、K-means图解

具体演示视频可查看(B站UP主:KnowingAI知智)
若我们手上有一些水果,我们希望对它们进行分类,假设分为两类,则此时K=2。
step1:随机选取两个样本点作为聚类中心点centrol
在这里插入图片描述

step2:计算其他每个样本与聚类中心centrol的距离,距离谁近就归为哪类,一般采用欧氏距离。
在这里插入图片描述

step3:根据已分类的结果,重新计算聚类中心,聚类中心是已分类的所有样本的平均值(means)

在这里插入图片描述
然后重复之前的步骤,重新计算距离进行划分,直到某一次计算聚类中心点和上次相同,则聚类结束。

3、聚类算法优缺点分析

聚类算法不需要手动设置标签,故属于无监督学习,相比于监督学习,它更加简单、易于理解,但是准确率方面不如监督学习。

4、K-Means()算法实现案例

API调用:

API:sklearn.cluster.KMeans(n_clusters=8, init='k=means++')
n_cluster:初始聚类中心数量,即K值
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
# 生成示例数据,100个二维数据,横坐标纵坐标都在0-1范围内
X = np.random.rand(100, 2)
# 创建K-means模型
kmeans = KMeans(n_clusters=3)
# 训练模型
kmeans.fit(X)
# 获取聚类结果
labels = kmeans.labels_
# 获取每个数据点的簇标签。labels_是一个数组,表示每个数据点所属的簇的索引。
centroids = kmeans.cluster_centers_
# 获取每个簇的质心坐标。cluster_centers_是一个形状为(n_clusters, n_features)的数组,表示每个簇的质心位置。
# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(centroids[:, 0], centroids[:, 1], s=300, c='red', marker='x')
plt.show()

在这里插入图片描述

5、聚类效果的评估(轮廓系数评估法)

内部距离最小化,外部距离最大化
轮廓系数: S C i = b i − a i m a x ( b i , a i ) SCi=\frac{b_i-a_i}{max(b_i,a_i)} SCi=max(bi,ai)biai
b i b_i bi:一个簇内某个样本到其他簇的所有样本距离的最小值
a i a_i ai:一个簇内某个样本到本身簇内所有样本距离的平均值
b i > > a i b_i>>a_i bi>>ai 此时 S C i ≈ 1 SCi≈1 SCi1 效果好
b i < < a i b_i<<a_i bi<<ai 此时 S C i ≈ − 1 SCi≈-1 SCi1 效果差
轮廓系数取值范围在 ( − 1 , 1 ) (-1,1) (1,1),越接近 1 1 1,聚类效果越好,越接近 − 1 -1 1,聚类效果越差

from sklearn.metrics import silhouette_score  #计算轮廓系数,传入样本点和分类标签

如上例中,加上如下代码

from sklearn.metrics import silhouette_score
score = silhouette_score(X,labels)
print(f"轮廓系数为{score}")

轮廓系数为0.3873688462341751,分类效果一般。可以加一个循环找到一定范围内最优的K值,此处用轮廓系数衡量

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
import matplotlib.pyplot as plt
# 生成示例数据,100个二维数据,横坐标纵坐标都在0-1范围内
X = np.random.rand(100, 2)
# 创建K-means模型
best_score=0
for k in range(2,11):kmeans = KMeans(n_clusters=k)# 训练模型kmeans.fit(X)# 获取聚类结果labels = kmeans.labels_# 获取每个数据点的簇标签。labels_是一个数组,表示每个数据点所属的簇的索引。centroids = kmeans.cluster_centers_score = silhouette_score(X,labels)if score > best_score:best_score = scorebest_k = k
print(f'最佳簇数: {best_k}, 轮廓系数: {best_score}')
# 最佳簇数: 4, 轮廓系数: 0.42684837185343705

相关文章:

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法 K表示超参数个数&#xff0c;如分成几个类别&#xff0c;K值就取多少。若无需求&#xff0c;可使用网格搜索找到最佳的K。 步骤&#xff1a; 1、随机设置K个特征空间内的点作为初始聚类中心&#xff1b; 2、对于其他每个点计算到K个中心的距离&#xff0c;…...

强化学习-6 DDPG、PPO、SAC算法

文章目录 1 DPG方法2 DDPG算法3 DDPG算法的优缺点4 TD3算法4.1 双Q网络4.2 延迟更新4.3 噪声正则 5 附15.1 Ornstein-Uhlenbeck (OU) 噪声5.1.1 定义5.1.2 特性5.1.3 直观理解5.1.4 数学性质5.1.5 代码示例5.1.6 总结 6 重要性采样7 PPO算法8 附28.1 重要性采样方差计算8.1.1 公…...

vue3实现多表头列表el-table,拖拽,鼠标滑轮滚动条优化

需求背景解决效果index.vue 需求背景 需要实现多表头列表的用户体验优化 解决效果 index.vue <!--/** * author: liuk * date: 2024-07-03 * describe:**** 多表头列表 */--> <template><el-table ref"tableRef" height"calc(100% - 80px)&qu…...

Micron近期发布了32Gb DDR5 DRAM

Micron Technology近期发布了一项内存技术的重大突破——一款32Gb DDR5 DRAM芯片&#xff0c;这项创新不仅将存储容量翻倍&#xff0c;还显著提升了针对人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;、高性能计算&#xff08;HPC&#xff09;以及数…...

SQL Server时间转换

第一种&#xff1a;format --转化成年月日 select format( GETDATE(),yyyy-MM-dd) --转化年月日&#xff0c;时分秒&#xff0c;这里的HH指24小时的&#xff0c;hh是12小时的 select format( GETDATE(),yyyy-MM-dd HH:mm:ss) --转化成时分秒的&#xff0c;这里就不一样的&…...

kubernetes集群部署:node节点部署和CRI-O运行时安装(三)

关于CRI-O Kubernetes最初使用Docker作为默认的容器运行时。然而&#xff0c;随着Kubernetes的发展和OCI标准的确立&#xff0c;社区开始寻找更专门化的解决方案&#xff0c;以减少复杂性和提高性能。CRI-O的主要目标是提供一个轻量级的容器运行时&#xff0c;它可以直接运行O…...

03:Spring MVC

文章目录 一&#xff1a;Spring MVC简介1&#xff1a;说说自己对于Spring MVC的了解&#xff1f;1.1&#xff1a;流程说明&#xff1a; 一&#xff1a;Spring MVC简介 Spring MVC就是一个MVC框架&#xff0c;Spring MVC annotation式的开发比Struts2方便&#xff0c;可以直接代…...

玩转springboot之springboot注册servlet

springboot注册servlet 有时候在springboot中依然需要注册servlet&#xff0c;filter&#xff0c;listener&#xff0c;就以servlet为例来进行说明&#xff0c;另外两个也都类似 使用WebServlet注解 在servlet3.0之后&#xff0c;servlet注册支持注解注册&#xff0c;而不需要在…...

推荐好玩的工具之OhMyPosh使用

解除禁止脚本 Set-ExecutionPolicy RemoteSigned 下载Oh My Posh winget install oh-my-posh 或者 Install-Module oh-my-posh -Scope AllUsers 下载Git提示 Install-Module posh-git -Scope CurrentUser 或者 Install-Module posh-git -Scope AllUser 下载命令提示 Install-Mo…...

pydub、ffmpeg 音频文件声道选择转换、采样率更改

快速查看音频通道数和每个通道能力判断具体哪个通道说话&#xff1b;一般能量大的那个算是说话 import wave from pydub import AudioSegment import numpy as npdef read_wav_file(file_path):with wave.open(file_path, rb) as wav_file:params wav_file.getparams()num_cha…...

0803实操-Windows Server系统管理

Windows Server系统管理 系统管理与基础配置 查看系统信息、更改计算机名称 网络配置 启用网络发现 Windows启用网络发现是指在网络设置中启用一个功能&#xff0c;该功能允许您的计算机在网络上识别和访问其他设备和计算机。具体来说&#xff0c;启用网络发现后&#xff…...

使用Java构建物联网应用的最佳实践

使用Java构建物联网应用的最佳实践 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 随着物联网&#xff08;IoT&#xff09;技术的快速发展&#xff0c;越来越…...

价格预言机的使用总结(一):Chainlink篇

文章首发于公众号&#xff1a;Keegan小钢 前言 价格预言机已经成为了 DeFi 中不可获取的基础设施&#xff0c;很多 DeFi 应用都需要从价格预言机来获取稳定可信的价格数据&#xff0c;包括借贷协议 Compound、AAVE、Liquity &#xff0c;也包括衍生品交易所 dYdX、PERP 等等。…...

【Pyhton】读取寄存器数据到MySQL数据库

目录 步骤 modsim32软件配置 Navicat for MySQL 代码实现 步骤 安装必要的库&#xff1a;确保安装了pymodbus和pymysql。 配置Modbus连接&#xff1a;设置Modbus从站的IP地址、端口&#xff08;对于TCP&#xff09;或串行通信参数&#xff08;对于RTU&#xff09;。 连接M…...

jmeter-beanshell学习3-beanshell获取请求报文和响应报文

前后两个报文&#xff0c;后面报文要用前面报文的响应结果&#xff0c;这个简单&#xff0c;正则表达式或者json提取器&#xff0c;都能实现。但是如果后面报文要用前面请求报文的内容&#xff0c;感觉有点难。最早时候把随机数写在自定义变量&#xff0c;前后两个接口都用这个…...

【C++】B树及其实现

写目录 一、B树的基本概念1.引入2.B树的概念 二、B树的实现1.B树的定义2.B树的查找3.B树的插入操作4.B树的删除5.B树的遍历6.B树的高度7.整体代码 三、B树和B*树1.B树2.B*树3.总结 一、B树的基本概念 1.引入 我们已经学习过二叉排序树、AVL树和红黑树三种树形查找结构&#x…...

C++(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例

C(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例 文章目录 C(Qt)-GIS开发-QGraphicsView显示瓦片地图简单示例1、概述2、实现效果3、主要代码4、源码地址 更多精彩内容&#x1f449;个人内容分类汇总 &#x1f448;&#x1f449;GIS开发 &#x1f448; 1、概述 支持多线程加…...

CTFShow的RE题(三)

数学不及格 strtol 函数 long strtol(char str, char **endptr, int base); 将字符串转换为长整型 就是解这个方程组了 主要就是 v4, v9的关系&#xff0c; 3v9-(v10v11v12)62d10d4673 v4 v12 v11 v10 0x13A31412F8C 得到 3*v9v419D024E75FF(1773860189695) 重点&…...

WordPress主题开发进群付费主题v1.1.2 多种引流方式

全新前端UI界面&#xff0c;多种前端交互特效让页面不再单调&#xff0c;进群页面群成员数&#xff0c;群成员头像名称&#xff0c;每次刷新页面随机更新不重复&#xff0c;最下面评论和点赞也是如此随机刷新不重复 进群页面简介&#xff0c;群聊名称&#xff0c;群内展示&…...

SAP中的 UPDATA TASK 和 BACKGROUND TASK

前言&#xff1a; 记录这篇文章起因是调查生产订单报工问题引申出来的一个问题&#xff0c;后来再次调查后了解了其中缘由&#xff0c;大概记录以下&#xff0c;如有不对&#xff0c;欢迎指正。问题原贴如下&#xff1a; SAP CO11N BAPI_PRODORDCONF_CREATE_TT连续报工异步更…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

JS红宝书笔记 - 3.3 变量

要定义变量&#xff0c;可以使用var操作符&#xff0c;后跟变量名 ES实现变量初始化&#xff0c;因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符&#xff0c;可以创建一个全局变量 如果需要定义…...