昇思11天
基于 MindSpore 实现 BERT 对话情绪识别
BERT模型概述
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用,例如问答、命名实体识别、自然语言推理和文本分类。BERT基于Transformer中的Encoder,并采用了双向的结构,因此掌握Transformer的Encoder结构是理解BERT的基础。
BERT模型的主要创新点
BERT模型的主要创新点在于其预训练方法,即使用了**Masked Language Model(MLM)和Next Sentence Prediction(NSP)**两种方法来分别捕捉词语和句子级别的表征(representation)。
Masked Language Model(MLM)
在MLM训练中,随机将语料库中15%的单词进行Mask操作。具体操作如下:
- 80%的单词直接用[Mask]替换。
- 10%的单词替换成其他随机的单词。
- 10%的单词保持不变。
通过这种方式,模型需要预测被Mask的词,从而捕捉到单词级别的语义信息。
Next Sentence Prediction(NSP)
NSP的目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句。通过预测B是否为A的下一句,模型能够学习到句子级别的语义关系。
BERT的预训练和Fine-tuning
BERT预训练之后,会保存其Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。预训练好的BERT模型可以用于下游任务的Fine-tuning,如文本分类、相似度判断和阅读理解等。
对话情绪识别(EmoTect)
对话情绪识别(Emotion Detection,简称EmoTect),旨在识别智能对话场景中的用户情绪。针对用户文本,自动判断其情绪类别并给出相应的置信度。情绪类型一般分为积极、消极和中性。对话情绪识别适用于聊天、客服等多个场景,帮助企业更好地把握对话质量、改善用户交互体验,分析客服服务质量并降低人工质检成本。
步骤:通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
有构建好的,直接调用:
from mindnlp.transformers import BertForSequenceClassification, BertModel

相关文章:
昇思11天
基于 MindSpore 实现 BERT 对话情绪识别 BERT模型概述 BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用&am…...
AI绘画Stable Diffusion【图生图教程】:图片高清修复的三种方案详解,你一定能用上!(附资料)
大家好,我是画画的小强 今天给大家分享一下用AI绘画Stable Diffusion 进行 高清修复(Hi-Res Fix),这是用于提升图像分辨率和细节的技术。在生成图像时,初始的低分辨率图像会通过放大算法和细节增强技术被转换为高分辨…...
适用于Mac和Windows的最佳iPhone恢复软件
本文将指导您选择一款出色的iPhone数据恢复软件来检索您的宝贵数据。 市场上有许多所谓的iPhone恢复程序。各种程序很难选择并选择其中之一。一旦您做出了错误的选择,您的数据就会有风险。 最好的iPhone数据恢复软件应包含以下功能。 1.安全可靠。 2.恢复成功率高…...
64.ThreadLocal造成的内存泄漏
内存泄漏 程序中已动态分配的堆内存,由于某种原因程序为释放和无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等严重后果。内存泄漏的堆积终将导致内存溢出。 内存溢出 没有足够的内存提供申请者使用。 ThreadLocal出现内存泄漏的真实原因 内存泄漏的发…...
深入刨析Redis存储技术设计艺术(二)
三、Redis主存储 3.1、存储相关结构体 redisServer:服务器 server.h struct redisServer { /* General */ pid_t pid; /* Main process pid. */ pthread_t main_thread_id; /* Main thread id */ char *configfile; /* Absolut…...
python读取写入txt文本文件
读取 txt 文件 def read_txt_file(file_path):"""读取文本文件的内容:param file_path: 文本文件的路径:return: 文件内容"""try:with open(file_path, r, encodingutf-8) as file:content file.read()return contentexcept FileNotFoundError…...
日期选取限制日期范围antdesign vue
限制选取的日期范围 效果图 <a-date-pickerv-model"dateTime"format"YYYY-MM-DD":disabled-date"disabledDate"valueFormat"YYYY-MM-DD"placeholder"请选择日期"allowClear />methods:{//回放日期选取范围限制&…...
【大模型】衡量巨兽:解读评估LLM性能的关键技术指标
衡量巨兽:解读评估LLM性能的关键技术指标 引言一、困惑度:语言模型的试金石1.1 定义与原理1.2 计算公式1.3 应用与意义 二、BLEU 分数:翻译质量的标尺2.1 定义与原理2.2 计算方法2.3 应用与意义 三、其他评估指标:综合考量下的多元…...
《优化接口设计的思路》系列:第2篇—小程序性能优化
优化Uniapp应用程序的性能可以从以下几个方面进行优化: 1.减少页面加载时间:避免页面过多和过大的组件,减少不必要的资源加载。可以使用懒加载的方式,根据用户的实际需求来加载页面和组件。 2.节流和防抖:对于频繁触发…...
prototype 和 __proto__的区别
prototype 和 __proto__ 在 JavaScript 中都与对象的原型链有关,但它们各自有不同的用途和含义。 prototype prototype 是函数对象的一个属性,它指向一个对象,这个对象包含了可以由特定类型的所有实例共享的属性和方法。当我们创建一个新的…...
网络中未授权访问漏洞(Rsync,PhpInfo)
Rsync未授权访问漏洞 Rsync未授权访问漏洞是指Rsync服务配置不当或存在漏洞,导致攻击者可以未经授权访问和操作Rsync服务。Rsync是一个用于文件同步和传输的开源工具,通常在Unix/Linux系统上使用。当Rsync服务未经正确配置时,攻击者可以利用…...
DataWhaleAI分子预测夏令营 学习笔记
AI分子预测夏令营学习笔记 一、直播概览 主持人介绍 姓名:徐翼萌角色:DataWhale助教活动目的:分享机器学习赛事经验,提升参赛者在分子预测领域的能力 嘉宾介绍 姓名:余老师背景:Data成员,腾…...
lnmp php7 安装ssh2扩展
安装ssh2扩展前必须安装libssh2包 下载地址: wget http://www.libssh2.org/download/libssh2-1.11.0.tar.gzwget http://pecl.php.net/get/ssh2-1.4.tgz (这里要换成最新的版本) 先安装 libssh2 再安装 SSH2: tar -zxvf libssh2-1.11.0.tar.gzcd libss…...
数据库概念题总结
1、 2、简述数据库设计过程中,每个设计阶段的任务 需求分析阶段:从现实业务中获取数据表单,报表等分析系统的数据特征,数据类型,数据约束描述系统的数据关系,数据处理要求建立系统的数据字典数据库设计…...
提升用户体验之requestAnimationFrame实现前端动画
1)requestAnimationFrame是什么? 1.MDN官方解释 2.解析这段话: 1、那么浏览器重绘是指什么呢? ——大多数电脑的显示器刷新频率是60Hz,1000ms/6016.66666667ms的时间刷新一次 2、重绘之前调用指定的回调函数更新动画? ——requ…...
Mysql慢日志、慢SQL
慢查询日志 查看执行慢的SQL语句,需要先开启慢查询日志。 MySQL 的慢查询日志,记录在 MySQL 中响应时间超过阀值的语句(具体指运行时间超过 long_query_time 值的SQL。long_query_time 的默认值为10,意思是运行10秒以上(不含10秒…...
卫星网络——Walker星座简单介绍
一、星座构型介绍 近年来,随着卫星应用领的不断拓展,许多任务已经无法单纯依靠单颗卫星来完成。与单个卫星相比,卫星星座的覆盖范围显著增加,合理的星座构型可以使其达到全球连续覆盖或全球多重连续覆盖,这样的特性使得…...
C++ Lambda表达式第一篇, 闭合(Closuretype)
C Lambda表达式第一篇, 闭合Closuretype ClosureType::operator()(params)auto 模板参数类型显式模板参数类型其他 ClosureType::operator ret(*)(params)() lambda 表达式是唯一的未命名,非联合,非聚合类类型(称为闭包类型&#…...
移动校园(3):处理全校课程数据excel文档,实现空闲教室查询与课程表查询
首先打开教学平台 然后导出为excel文档 import mathimport pandas as pd import pymssql serverName 127.0.0.1 userName sa passWord 123456 databaseuniSchool conn pymssql.connect(serverserverName,useruserName,passwordpassWord,databasedatabase) cursor conn.cur…...
【MySQL】1.初识MySQL
初识MySQL 一.MySQL 安装1.卸载已有的 MySQL2.获取官方 yum 源3.安装 MySQL4.登录 MySQL5.配置 my.cnf 二.MySQL 数据库基础1.MySQL 是什么?2.服务器,数据库和表3.mysqld 的层状结构4.SQL 语句分类 一.MySQL 安装 1.卸载已有的 MySQL //查询是否有相关…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
