大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
大模型:
-
位置编码有哪些?
-
介绍LoRA与QLoRA
-
RAG和微调的区别是什么?
-
哪些因素会导致LLM的偏见?
-
什么是思维链(CoT)提示?
-
Tokenizer的实现方法及原理
-
解释一下大模型的涌现能力?
-
解释langchainAgent的概念
-
langchain有哪些替代方案?
-
RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?
-
RAG和微调的区别是什么?
-
有了解过什么是稀疏微调吗?
-
简述一下FlashAttention的原理
-
画图说明 Transformer 基本流程
-
LLM预训练阶段有哪几个关键步骤?
-
RLHF模型为什么会表现比SFT更好?
-
LLaMA 模型为什么要用旋转位置编码?
-
DeepSpeed推理对算子融合做了哪些优化?
-
MHA,GQA,MQA三种注意力机制的区别是什么?
-
为什么现在的大模型大多是 decoder-only 的架构?
-
训练后量化(PTQ)和量化感知训练(QAT)与什么区别?
Attention:
1.什么是Attention? 为什么要用Attention?它有什么作用?
2.Attention的流程是什么样的?
3.普通的Attention和Transformer的Self-attention之间有什么关系:
4.什么是Self-attention?
Transformer:
- transformer是什么,它的基本原理是什么?
- 自注意力(Self-Attention)的作用是什么?它有什么优势?
- Multi-Head Attention是什么?它的作用是什么?
- 介绍Transformer的Encoder模块
- 介绍Transformer的Decoder模块
- Transformer中的Positional Encoding是做什么的?
- Transformer与传统的RNN和CNN模型有何区别?
- 解释Transformer的注意力权重?
- 介绍Transformer和ViT
- 介绍Transformer的QKV
- 介绍Layer Normalization
- Transformer训练和部署技巧
- 介绍Transformer的位置编码
- 介绍自注意力机制和数学公式
- Transformer和Mamba(SSM)的区别
- Transformer中的残差结构以及意义
- 为什么Transformer适合多模态任务?
- Transformer的并行化体现在哪个地方?
- 为什么Transformer一般使用LayerNorm?
- Transformer为什么使用多头注意力机制?
- Transformer训练的Dropout是如何设定的?
BERT:
1.BERT是什么?全称是什么?
2.BERT是如何进行预训练的?
3.BERT的优点是什么?
4.BERT的输入是什么?
5.BERT的预训练过程中是否使用了位置编码和注意力机制?
6.BERT的预训练模型有多大?
7.BERT和传统的Word2Vec、GloVe有什么区别?
8.BERT的训练策略有哪些?
9.如何微调BERT?
10.BERT的应用场景有哪些?
11.BERT的改进和扩展有哪些?
Stable Diffusion:
1.你了解Stable Diffusion吗?它是怎么训练出来的?
2.Stable Diffusion的预测过程是什么样的?
3. Stable Diffusion的diffusion是什么原理?
4.Stable Diffusion的各个模块的作用是?
你了解stable Diffusion吗?它是怎么训练出来的?
相关文章:
大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
大模型: 位置编码有哪些? 介绍LoRA与QLoRA RAG和微调的区别是什么? 哪些因素会导致LLM的偏见? 什么是思维链(CoT)提示? Tokenizer的实现方法及原理 解释一下大模型的涌现能力?…...

90元搭建渗透/攻防利器盒子!【硬件篇】
前言 以下内容请自行思考后进行实践。 使用场景 在某些情况下开软件进行IP代理很麻烦,并不能实现真正全局,而且还老容易忘记,那么为了在实景工作中,防止蓝队猴子封IP,此文正现。 正文 先说一下实验效果࿱…...

用vue2+elementUI封装手机端选择器picker组件,支持单选、多选、远程搜索多选
单选注意点: touchmove.prevent: 在 touchmove 事件上添加 .prevent 修饰符,以阻止默认的滚动行为。 handleTouchStart: 记录触摸开始的 Y 坐标和当前的 translateY 值。 handleTouchMove: 计算触摸移动的距离,并更新 translateY 值。 han…...

『古籍自有答案』古风H5案例赏析
「古籍自有答案」,一部由新京报与字节跳动公益联合打造的古风H5,以诗意盎然的开篇引领用户穿梭于千年文脉。 part1. 创意定位 "人生有惑问先贤,先贤答案存古籍",在这里,每一个灵魂的探问,都能在…...
Laravel模型事件完全指南:触发应用程序的动态行为
标题:Laravel模型事件完全指南:触发应用程序的动态行为 在Laravel框架中,模型事件提供了一种优雅的方式来处理Eloquent模型生命周期中的各种关键时刻。通过监听和响应这些事件,开发者可以自动化许多常见的任务,如日志…...
hot100 |八、二叉树
1-leetcode94. 二叉树的中序遍历 注意:√ 递归方法已经很熟练了,两种不同的递归方式迭代法需要注意,zrm就遇到了要求迭代实现,前序遍历和后续遍历其实不难,中序遍历用的少,注意看一看 // 1.递归方法1Lis…...

Matlab协方差矩阵分解法生成随机场
Matlab协方差矩阵分解法生成随机场 相关系数矩阵 % function outcohesion(x,y,mu,theta) % end % xyload(F:\Research-OUC\基于机器许学习模型的海底斜坡可靠度研究\基于comsol的斜坡稳定性分析\comsol网格操作\grid_operate-matlab.mphtxt); % xxy(:,1); % yxy(:,2); Xlinspac…...
android 在清单文件中配置receiver,系统是何时会注册此广播接收者的?
在 Android 中,通过清单文件(AndroidManifest.xml)配置的广播接收器(BroadcastReceiver),系统会在特定的时机自动注册这些广播接收器。以下是详细的说明: 静态注册的广播接收器 静态注册的广播…...
嵌入式硬件电路常用设计软件
目录 1. Cadence Allegro 2. PADS 3. Altium Designer 4. Multisim 5. Protues 1. Cadence Allegro 功能: Cadence Allegro是Cadence公司推出的先进PCB(Printed Circuit Board,印刷电路板)设计布线工具,也是目前…...
c#的List<T>的SelectMany 和Select
在C#中,List<T>(以及任何实现了IEnumerable<T>的集合)的Select和SelectMany扩展方法都是LINQ(Language Integrated Query)的一部分,用于对集合中的元素进行查询和转换。 尽管它们的作用有些相…...

69.WEB渗透测试-信息收集- WAF、框架组件识别(9)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:68.WEB渗透测试-信息收集- WAF、框架组件识别(8) 有无waf存在&am…...

ASCII码对照表(Matplotlib颜色对照表)
文章目录 1、简介1.1 颜色代码 2、Matplotlib库简介2.1 简介2.2 安装2.3 后端2.4 入门例子 3、Matplotlib库颜色3.1 概述3.2 颜色图的分类3.3 颜色格式表示3.4 内置颜色映射3.5 xkcd 颜色映射3.6 颜色命名表 4、Colorcet库5、颜色对照表结语 1、简介 1.1 颜色代码 颜色代码是…...

Mysql-常用函数及其用法总结
1、字符串函数 测试用例如下: 1.1 CONCAT() 将多个字符串连接成一个字符串。 SELECT CONCAT(first_name, , last_name) AS full_name FROM users; -- 期望结果:John Doe, Jane Smith, Michael Johnson 1.2 SUBSTRING() 提取子字符串 SELECT SUBSTR…...

【c++刷题笔记-数组】day29:452. 用最少数量的箭引爆气球、 435. 无重叠区间 、 763.划分字母区间
452. 用最少数量的箭引爆气球 - 力扣(LeetCode) 思路:先按照左边界排序,当前的左边界大于前一个的右边界的时候,表示没有覆盖所以需要一根箭,反之则要更新为最小的右边界 重点:是区间覆盖问题…...

【数据结构】链表带环问题分析及顺序表链表对比分析
【C语言】链表带环问题分析及顺序表链表对比分析 🔥个人主页:大白的编程日记 🔥专栏:C语言学习之路 文章目录 【C语言】链表带环问题分析及顺序表链表对比分析前言一.顺序表和链表对比1.1顺序表和链表的区别1.2缓存利用率&#…...

快速解决找不到krpt.dll,无法继续执行代码问题
对于那些遇到计算机开机出现由于无法找到krpt.dll,进而无法继续执行代码问题的用户。 krpt.dll是计算机系统中与DirectX紧密相关的重要文件,如果它出现问题,可能会对一些特定的软件或游戏的运行产生影响。实际上,我们有多种解决该…...
C# List、LinkedList、Dictionary性能对比
数据结构性能对比 List、LinkedList、Dictionary 1. ArrayList (List:前传) ArrayList 是一个特殊数组, 通过添加和删除元素就可以动态改变数组的长度。 ArrayList集合相对于数组的优点: 支持…...

【Spring Cloud】微服务的简单搭建
文章目录 🍃前言🎄开发环境安装🌳服务拆分的原则🚩单一职责原则🚩服务自治🚩单向依赖 🍀搭建案例介绍🌴数据准备🎋工程搭建🚩构建父子工程🎈创建父…...

全球首款商用,AI为视频自动配音配乐产品上线
近日,海外推出了一款名为Resona V2A的产品,这是全球首款商用视频转音频 (V2A) 技术产品。这项突破性技术利用AI,仅凭视频数据即可自动生成高质量、与上下文相关的音频,包括声音设计、音效、拟音和环境音,为电影制作人、…...

Git管理源代码、git简介,工作区、暂存区和仓库区,git远程仓库github,创建远程仓库、配置SSH,克隆项目
学习目标 能够说出git的作用和管理源代码的特点能够如何创建git仓库并添加忽略文件能够使用add、commit、push、pull等命令实现源代码管理能够使用github远程仓库托管源代码能够说出代码冲突原因和解决办法能够说出 git 标签的作用能够使用使用git实现分支创建,合并…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...