对话大模型Prompt是否需要礼貌点?
大模型相关目录
大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。
- 基于Dify的QA数据集构建(附代码)
- Qwen-2-7B和GLM-4-9B:大模型届的比亚迪秦L
- 文擎毕昇和Dify:大模型开发平台模式对比
- Qwen-VL图文多模态大模型微调指南
- 从零开始的Ollama指南:部署私域大模型
- 基于Dify的智能分类方案:大模型结合KNN算法(附代码)
- OpenCompass:大模型测评工具
- 一文读懂多模态大模型基础架构
- 大模型管理平台:one-api使用指南
- 大模型RAG、ROG、RCG概念科普
- RAGOnMedicalKG:大模型结合知识图谱的RAG实现
- DSPy:变革式大模型应用开发
- 最简明的Few-shot Prompt指南
- Semantic Kernel:微软大模型开发框架——LangChain 替代
- 对话大模型Prompt是否需要礼貌点?
文章目录
- 大模型相关目录
随着人工智能技术的飞速发展,对话大模型如GPT-3、ChatGLM等已经能够以极高的准确性和流畅度与人类进行交互。这些模型在提升生产效率、优化用户体验等方面发挥着重要作用。在使用这些模型时,一个值得探讨的问题是:否需要在与语言模型的交往中体现基本的礼貌,给予合理的尊重?礼貌的用语会不会提升大模型表现?
有研究就摘要总结、偏见检测两部分内容对大模型进行了检测。

最终得出的结论可能与你的认知有所出入:
提示语句的礼貌程度为最高(8分)时,模型的得分为60.02%,明显高于最低礼貌程度(1分)时的51.93%。另一个值得关注的现象是,过于谦卑的语气在有些情况下也会影响模型的表现。以中文测试为例,当礼貌程度达到最高(8分)时,ChatGLM3在C-Eval测试中的分数为20.58%,低于6-7分时的21%左右。这或许与中国文化中"逊于人"的传统价值观有关,过于卑躬屈膝反而会让人产生不自信、不专业的印象。
在与对话大模型交互时,研究发现,无论输入的礼貌程度如何,ROUGE-L和BERTScore这两种评估文本生成质量的指标分数都保持稳定。然而,对于不同的模型,输出的长度会随着礼貌程度的变化而变化。例如,对于GPT模型,当输入的礼貌程度降低时,输出的长度也会相应减少。对于Llama模型,降低礼貌程度通常会导致对话长度的缩短,但如果是极其不礼貌的输入,对话长度反而会显著增加。这种趋势可能是因为在需要详细描述或指令的场景中,人们更倾向于使用礼貌和正式的语言,从而导致输出内容更长。
因此,在设计提示语句时,我们需要格外注意语气的得体程度。追求一种"中庸之道",既不过于简陋粗鲁,又避免过分谦卑逊色,让语气保持在一个恰到好处的亲和且专业的程度。这不仅有利于优化语言模型的输出质量,也更加贴合不同文化背景下的沟通习惯。
从更深层次来看,这个研究结果启发我们反思了语言模型与人类的关系。语言模型之所以能模仿人性化行为,根源在于它们是通过学习海量人类语料而训练出来的。它们所体现出的特质,其实就是对人类文明的一种映射与延伸。所以,如果你的用户群跨越许多不同的文化和语言,那么在开发提示时你应该牢记这一点。
相关文章:
对话大模型Prompt是否需要礼貌点?
大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 基于Dify的QA数据集构建(附代码)Qwen-2-7B和GLM-4-9B&#x…...
【驱动篇】龙芯LS2K0300之ADC驱动
实验目的 由于LS2K0300久久派开发板4.19内核还没有现成可用的ADC驱动,但是龙芯官方的5.10内核已经提供了ADC驱动,想要在4.19内核使用ADC就要参考5.10内核移植驱动,本次实验主要是关于ADC驱动的移植和使用 驱动移植 主要的驱动代码主要有3个…...
Python入门 2024/7/3
目录 for循环的基础语法 遍历字符串 练习:数一数有几个a range语句 三个语法 语法1 语法2 语法3 练习:有几个偶数 变量作用域 for循环的嵌套使用 打印九九乘法表 发工资案例 continue和break语句 函数的基础定义语法 函数声明 函数调用 …...
Go 语言 Map(集合)
Go 语言 Map(集合) Map 是 Go 语言中一种非常重要的数据结构,它用于存储键值对。在 Go 中,Map 是一种无序的键值对的集合,其中每个键都是唯一的,而值则可以是任何类型。Map 是 Go 语言的内置类型,使用起来非常方便,同时也是许多 Go 程序中不可或缺的一部分。 Map 的声明…...
SpringCloud学习Day7:Seata
概念 Seata是一款开源的分布式事务解决方案,致力于在微服务架构下提供高性能和简单易用的分布式事务服务 工作流程 TC以Seata服务器形式独立部署,TM和RM则是以Seata Client的形式集成在微服务中运行...
【ubuntu中关于驱动得问题】—— 如何将nouveau驱动程序加入黑名单和安装NVIDIA显卡驱动
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、nouveau驱动程序加入黑名单二、安装NVIDIA显卡驱动总结 前言 NVIDIA显卡驱动是用于支持和优化NVIDIA显卡在计算机系统中运行的关键软件组件。该驱动程序能…...
LabVIEW从测试曲线中提取特征值
在LabVIEW中开发用于从测试曲线中提取特征值的功能时,可以考虑以下几点: 数据采集与处理: 确保你能够有效地采集和处理测试曲线数据。这可能涉及使用DAQ模块或其他数据采集设备来获取曲线数据,并在LabVIEW中进行处理和分析。 特…...
【应届应知应会】SQL常用知识点50道
SueWakeup 个人主页:SueWakeup 系列专栏:借他一双眼,愿这盛世如先生所愿 个性签名:人生乏味啊,我欲令之光怪陆离 本文封面由 凌七七~❤ 友情提供 目录 数据库的概念 (什么是数据库) RDBMS NOSQL 数据库的分类 …...
【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】
持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】 购物车需求描述购物车数据结构数据Model抽取实现流程(参照京东)代码实现参考 购物车需求描述 用户可以在登录状态下将商品添加到购物车【用户购物…...
科技赋能智慧应急:“数字孪生+无人机”在防汛救灾中的应用
近期,全国多地暴雨持续,“麻辣王子工厂停工”“水上派出所成水上的派出所了”等相关词条冲上热搜,让人们看到了全国各地城市内涝、洪涝带来的严重灾情。暴雨带来的影响可见一斑,潜在的洪水、泥石流、山体滑坡等地质灾害更应提高警…...
urfread刷算法|构建一棵树
大意 示例标签串: 处理结果: 题目1 根据标签串创建树 需求 需求:给出一个字符串,将这个字符串转换为一棵树。 字符串可以在代码里见到,是以#开头,按照\分割的字符串。 你需要将这个字符串࿰…...
在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野
在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野 flyfish 在卷积神经网络(CNN)中,可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的…...
【学习笔记】Mybatis-Plus(四):MP中内置的插件
内置插件 目前MP已经存在的内部插件包括如下: 插件类名作用PaginationInnerInterceptor分页插件。可以代替以前的PageHelperOptimisticLockerInnerInterceptor乐观锁插件。用于幂等性操作,采用版本更新记录DynamicTableNameInnerInterceptor动态表名Te…...
GlusterFS分布式存储系统
GlusterFS分布式存储系统 一,分布式文件系统理论基础 1.1 分布式文件系统出现 计算机通过文件系统管理,存储数据,而现在数据信息爆炸的时代中人们可以获取的数据成指数倍的增长,单纯通过增加硬盘个数来扩展计算机文件系统的存储…...
微信公众平台测试账号本地微信功能测试说明
使用场景 在本地测试微信登录功能时,因为微信需要可以互联网访问的域名接口,所以本地使用花生壳做内网穿透,将前端服务的端口和后端服务端口进行绑定,获得花生壳提供的两个外网域名。 微信测试账号入口 绑定回调接口 回调接口的…...
Lua语言入门
目录 Lua语言1 搭建Lua开发环境1.1 安装Lua解释器WindowsLinux 1.2 IntelliJ安装Lua插件在线安装本地安装 2 Lua语法2.1 数据类型2.2 变量全局变量局部变量命名规范局部变量作用域 2.3 注释单行注释多行注释 2.4 赋值2.5 操作符数学操作符比较操作符逻辑操作符连接操作符取长度…...
卷积神经网络有哪些应用场景
卷积神经网络(Convolutional Neural Networks,简称CNN)的应用场景非常广泛,尤其是在处理具有网格结构的数据(如图像、视频)时表现出色。以下是一些主要的应用场景: 1. 图像识别与分类 图像分类…...
std::unordered_map和std::map在性能上有何不同
std::unordered_map和std::map在性能上的不同主要体现在以下几个方面: 1. 底层数据结构 std::unordered_map:基于哈希表实现,通过哈希函数计算元素的存储位置。哈希表能够直接通过哈希值快速定位到元素的位置,从而实现高效的查找…...
C++20中的基于范围的for循环(range-based for loop)
C11中引入了对基于范围的for循环(range-based for loop)的支持:该循环对一系列值(例如容器中的所有元素)进行操作。代码段如下: const std::vector<int> vec{ 1,2,3,4,5 }; for (const auto& i : vec)std::cout << i << ", …...
PCIe驱动开发(2)— 第一个简单驱动编写和测试
PCIe驱动开发(2)— 第一个简单驱动编写和测试 一、前言 教程参考:02_实战部分_PCIE设备测试 教程参考:03_PCIe设备驱动源码解析 二、驱动编写 新建hello_pcie.c文件 touch hello_pcie.c然后编写内容如下所示: #i…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
