深入探索:scikit-learn中递归特征消除(RFE)的奥秘
深入探索:scikit-learn中递归特征消除(RFE)的奥秘
在机器学习的世界里,特征选择是一项至关重要的任务。它不仅能够提高模型的性能,还能减少模型的复杂度,避免过拟合。scikit-learn,作为Python中一个广泛使用的机器学习库,提供了多种特征选择方法。其中,递归特征消除(Recursive Feature Elimination, RFE)因其独特的递归机制和高效性而备受关注。本文将详细解析RFE的工作原理,并展示如何在实际问题中应用RFE进行特征选择。
特征选择的重要性
在机器学习模型训练之前,选择合适的特征对于提高模型的预测能力和泛化能力至关重要。特征选择可以:
- 减少维度:降低数据的维度,避免维度灾难。
- 去除噪声:排除不相关或冗余的特征,减少噪声干扰。
- 提高效率:减少计算量,加快模型训练速度。
- 增强模型表现:选择最有信息量的特征,提高模型的预测精度。
递归特征消除(RFE)简介
RFE是一种特征选择方法,它通过递归地构建模型并消除最不重要的特征,直到达到所需的特征数量。RFE的基本思想是:
- 初始化:使用所有特征训练一个基模型。
- 递归消除:在每一步中,移除权重最小的特征,重新训练模型。
- 权重评估:评估每个特征对模型的贡献度,通常通过模型的系数大小来衡量。
- 重复过程:重复上述过程,直到达到所需的特征数量。
RFE的工作原理
RFE的工作原理可以概括为以下几个步骤:
- 选择一个基模型:RFE依赖于一个基模型来评估特征的重要性。这个模型可以是决策树、随机森林、支持向量机等。
- 评估特征重要性:基模型为每个特征分配一个重要性分数。
- 特征排序:根据重要性分数对特征进行排序。
- 递归消除:从最不重要的特征开始,递归地移除一定数量的特征,并重新训练模型。
- 性能评估:在每一步中,评估模型的性能,以确定是否保留当前的特征集。
代码示例:使用RFE进行特征选择
假设我们有一个数据集X和目标变量y,我们希望使用RFE选择最重要的特征。以下是一个使用RFE的示例代码:
from sklearn.datasets import load_iris
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target# 创建基模型
model = LogisticRegression(solver='lbfgs', max_iter=200)# 创建RFE对象,设置要保留的特征数量
rfe = RFE(estimator=model, n_features_to_select=2)# 拟合RFE模型
rfe.fit(X, y)# 打印选择的特征索引
selected_features = X[:, rfe.support_]
print("Selected features indices:", rfe.support_)# 打印选择的特征
print("Selected features:", X[:, rfe.support_])# 使用选择的特征训练模型
model.fit(selected_features, y)# 评估模型性能
score = model.score(X[:, rfe.support_], y)
print("Model score with selected features:", score)
结论
递归特征消除(RFE)是一种强大的特征选择方法,它通过递归地消除最不重要的特征来选择最有信息量的特征。RFE的使用非常简单,只需要指定一个基模型和要保留的特征数量。在实际应用中,RFE可以帮助我们提高模型的性能,减少模型的复杂度,并提高模型的泛化能力。
注意:RFE的效果依赖于基模型的选择和参数设置。在实际应用中,可能需要尝试不同的基模型和参数,以找到最优的特征集。
通过本文的介绍和代码示例,你应该对RFE有了更深入的理解,并掌握了如何在scikit-learn中使用RFE进行特征选择。特征选择是机器学习中一个重要的环节,掌握RFE将为你的模型训练提供有力的支持。
相关文章:
深入探索:scikit-learn中递归特征消除(RFE)的奥秘
深入探索:scikit-learn中递归特征消除(RFE)的奥秘 在机器学习的世界里,特征选择是一项至关重要的任务。它不仅能够提高模型的性能,还能减少模型的复杂度,避免过拟合。scikit-learn,作为Python中一个广泛使用的机器学习…...
240708_昇思学习打卡-Day20-MindNLP ChatGLM-6B StreamChat
240708_昇思学习打卡-Day20-MindNLP ChatGLM-6B StreamChat 基于MindNLP和ChatGLM-6B实现一个聊天应用,本文进行简单记录。 环境配置 %%capture captured_output # 实验环境已经预装了mindspore2.2.14,如需更换mindspore版本,可更改下面mi…...
lua入门(2) - 数据类型
前言 本文参考自: Lua 数据类型 | 菜鸟教程 (runoob.com) 希望详细了解的小伙伴还请查看上方链接: 八个基本类型 type - 函数查看数据类型: 测试程序: print(type("Hello world")) --> string print(type(10.4*3)) --> number print(t…...
dify/api/models/provider.py文件中的数据表
源码位置:dify/api/models/provider.py providers 表结构 字段英文名数据类型字段中文名字备注idStringUUIDIDtenant_idStringUUID租户IDprovider_nameString提供商名称provider_typeString提供商类型encrypted_configText加密配置is_validBoolean是否有效last_us…...
从入门到精通:网络基础详解
前言 在现代社会,网络技术已经成为我们日常生活和工作中不可或缺的一部分。从简单的网页浏览到复杂的分布式系统,网络技术都扮演着至关重要的角色。通过这篇文章,读者将从入门到精通,全面掌握网络编程的理论和实践。 重点摘要 …...
初步理解三__《面向互联网大数据的威胁情报 并行挖掘技术研究》
初步理解三 5类战术标签 gtp 收集开源的网络安全报告并将其转化为统一的文本格式,并且标注了5类战术标签是一个涉及到数据处理和分类的复杂任务。以下是一种可能的处理方法: 数据收集和整合: 使用网络爬虫或API访问工具收集开源的网络安全…...
【C++修行之道】string类的使用
目录 一.C语言中的字符串 二、标准库中的string类 (了解) 2.1 string类(了解) 2.2 帮助文档阅读 三、 string类的常用接口说明 3.1 string类对象的常见构造 3.2 string类对象的容量操作 3.3 string类对象的访问及遍历操作 字符串类的简单实现 3.4 string类对象的修改…...
云原生监控-Kubernetes-Promethues-Grafana
云原生监控-Prometheus 作者:行癫(盗版必究) 引读:本文章所涉及到技术点包括Prometheus、Grafana、Kuebrnetes;Prometheus基于外部构建采集并监控Kubernetes集群以及集群中的应用,例如使用mysql-node-exporter、nginx-node-exporter采集Kuebrnetes集群中的应用数据,使用…...
MySQL高级----InnoDB引擎
逻辑存储结构 表空间 表空间(ibd文件),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。 段 段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是…...
Docker定时清理
一、循环调度执行 1、检查cron状态 systemctl status crond 2、创建要执行的shell脚本 vim /home/cleanup_docker.sh #! /bin/bash # 清理临时文件 echo $(date "%H:%M:%S") "执行docker清理命令..." docker system prune -af-a 清理包括未使用的镜像 …...
mysql之导入测试数据
运维时经常要这样:mysql改表名,创建一个一样的表不含数据,复制旧表几条数据进去 改变表的名字: RENAME TABLE old_table_name TO new_table_name; 这将把原来的表old_table_name重命名为new_table_name。 创建一个一样的表结构…...
WPScan漏洞扫描工具的介绍及使用
目录 1. 介绍2. 常用参数 1. 介绍 WPScan是Kali Linux默认自带的一款漏洞扫描工具,它采用Ruby编写,能够扫描WordPress网站中的多种安全漏洞,其中包括WordPress本身的漏洞、插件漏洞和主题漏洞,最新版本WPScan的数据库中包含超过18…...
基于单片机的饲料搅拌机控制系统设计
摘要 : 文章主要从软件和硬件两个部分对基于单片机的饲料搅拌机控制系统进行研究设计 。 硬件部分主要由传感器模块 、 信号采集模块、 键盘接入模块 、 LED 显示模块 、 继电器模块以及看门狗模块组成 。 软件部分在 KeilC51 软件基础上重点对控制系统主程序 、…...
Mysql笔记-v2
零、 help、\h、? 调出帮助 mysql> \hFor information about MySQL products and services, visit:http://www.mysql.com/ For developer information, including the MySQL Reference Manual, visit:http://dev.mysql.com/ To buy MySQL Enterprise support, training, …...
Java SpringBoot MongoPlus 使用MyBatisPlus的方式,优雅的操作MongoDB
Java SpringBoot MongoPlus 使用MyBatisPlus的方式,优雅的操作MongoDB 介绍特性安装新建SpringBoot工程引入依赖配置文件 使用新建实体类创建Service测试类进行测试新增方法查询方法 官方网站获取本项目案例代码 介绍 Mongo-Plus(简称 MP)是一…...
【易捷海购-注册安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...
antd+vue——实现table组件跨页多选,已选择数据禁止第二次重复选择
需求场景:点击【新增】按钮可以在分页弹窗中跨页多选选择数据后添加到页面中,再次点击【新增】,已经选择过的数据则置灰不让重复选择。 选择后,置灰 点击【确定】数据添加到页面中,可再次点击【新增】进行添加数据 …...
Python采集京东标题,店铺,销量,价格,SKU,评论,图片
京东的许多数据是通过 JavaScript 动态加载的,包括销量、价格、评论和评论时间等信息。我们无法仅通过传统的静态网页爬取方法获取到这些数据。需要使用到如 Selenium 或 Pyppeteer 等能够模拟浏览器行为的工具。 另外,京东的评论系统是独立的一个系统&a…...
数据中台指标管理系统
您所描述的是一个数据中台指标管理系统,它基于Spring Cloud技术栈构建。数据中台是企业数据管理和应用的中心平台,它整合了企业内外部的数据资源,提供数据服务和数据管理能力。以下是您提到的各个模块的简要概述: 1. **首页**&am…...
什么是ThreadLocal以及内存泄漏问题、hash冲突问题
ThreadLocal是什么 ThreadLocal类用来提供线程内部的局部变量 它主要有三大特性: 线程安全: 在多线程并发的场景下保证线程安全传递数据:通过ThreadLocal在同一线程传递公共变量线程隔离:每个线程的变量都是独立的,不会互相影响…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
