核函数的深入理解
核函数 (Kernel Function)是一种在高维特征空间中隐式计算内积的方法,它允许在原始低维空间中通过一个简单的函数来实现高维空间中的内积计算,而无需显式地计算高维特征向量。
核函数 的基本思想是通过一个映射函数 ϕ \phi ϕ 将原始数据从低维空间映射到高维空间。假设有两个数据点 x x x 和 y y y,在低维空间中的内积是 ⟨ x , y ⟩ \langle x, y \rangle ⟨x,y⟩。映射到高维空间后,内积变为 ⟨ ϕ ( x ) , ϕ ( y ) ⟩ \langle \phi(x), \phi(y) \rangle ⟨ϕ(x),ϕ(y)⟩。核函数 K K K 定义为:
K ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ K(x, y) = \langle \phi(x), \phi(y) \rangle K(x,y)=⟨ϕ(x),ϕ(y)⟩
关键在于,核函数 K K K 可以直接计算出高维空间中的内积,而不需要显式地计算 ϕ ( x ) \phi(x) ϕ(x) 和 ϕ ( y ) \phi(y) ϕ(y)。这种方法的优势在于,高维空间中的计算可能非常复杂和耗时,而核函数提供了一种高效的方式来处理这些计算。
常见的核函数包括:
- 线性核函数: K ( x , y ) = ⟨ x , y ⟩ K(x, y) = \langle x, y \rangle K(x,y)=⟨x,y⟩
- 多项式核函数: K ( x , y ) = ( ⟨ x , y ⟩ + c ) d K(x, y) = (\langle x, y \rangle + c)^d K(x,y)=(⟨x,y⟩+c)d
- 高斯径向基函数(RBF)核函数: K ( x , y ) = exp ( − ∥ x − y ∥ 2 2 σ 2 ) K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right) K(x,y)=exp(−2σ2∥x−y∥2)
- Sigmoid核函数: K ( x , y ) = tanh ( α ⟨ x , y ⟩ + c ) K(x, y) = \tanh(\alpha \langle x, y \rangle + c) K(x,y)=tanh(α⟨x,y⟩+c)
通过选择合适的核函数,可以在低维空间中隐式地进行高维空间的内积计算,从而实现非线性分类和回归等任务。
核函数 K ( x , y ) K(x, y) K(x,y) 之所以能够直接给出高维空间中内积的结果,而无需实际计算 ϕ ( x ) \phi(x) ϕ(x) 和 ϕ ( y ) \phi(y) ϕ(y),是因为核函数本身具有特定的数学性质,特别是满足 Mercer 条件。Mercer 条件 确保了核函数可以表示为某个高维特征空间中的内积。
具体来说,核函数 K ( x , y ) K(x, y) K(x,y) 是一个对称函数,满足对于任意有限输入集和任意实值函数 f f f,有:
∬ K ( x , y ) f ( x ) f ( y ) d x d y ≥ 0 \iint K(x, y) f(x) f(y) \, dx \, dy \geq 0 ∬K(x,y)f(x)f(y)dxdy≥0
这意味着 K ( x , y ) K(x, y) K(x,y) 是一个半正定函数。根据 Mercer 定理,任何满足 Mercer 条件的核函数 K ( x , y ) K(x, y) K(x,y) 都可以表示为某个特征映射 ϕ \phi ϕ 的内积,即:
K ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ K(x, y) = \langle \phi(x), \phi(y) \rangle K(x,y)=⟨ϕ(x),ϕ(y)⟩
这里的 ϕ \phi ϕ 是将数据从原始空间映射到高维特征空间的函数。关键在于,不需要知道 ϕ \phi ϕ 的具体形式,只需要知道核函数 K ( x , y ) K(x, y) K(x,y) 的定义,就可以直接计算高维空间中的内积。
这种隐式计算的优势在于:
- 计算效率:在高维空间中显式计算特征向量 ϕ ( x ) \phi(x) ϕ(x) 和 ϕ ( y ) \phi(y) ϕ(y) 可能非常耗时和复杂,而核函数提供了一种更高效的方式来处理这些计算。
- 避免维度灾难:在高维空间中,特征向量的维度可能非常高,甚至无穷大,这会导致计算上的困难。核函数允许在低维空间中进行计算,避免了直接处理高维数据的复杂性。
相关文章:
核函数的深入理解
核函数 (Kernel Function)是一种在高维特征空间中隐式计算内积的方法,它允许在原始低维空间中通过一个简单的函数来实现高维空间中的内积计算,而无需显式地计算高维特征向量。 核函数 的基本思想是通过一个映射函数 ϕ \phi ϕ …...
使用Ckman部署ClickHouse集群介绍
使用Ckman部署ClickHouse集群介绍 1. Ckman简介 ClickHouse Manager是一个为ClickHouse数据库量身定制的管理工具,它是由擎创科技数据库团队主导研发的一款用来管理和监控ClickHouse集群的可视化运维工具。目前该工具已在github上开源,开源地址为&…...
「前端工具」postman接口测试工具详解
Postman 是一款流行的 API 开发工具,用于构建和测试 RESTful API。以下是 Postman 的一些关键特性和使用方法的详解: 1. 界面和基本操作 工作区:Postman 的主界面,用于显示集合、环境和全局变量。请求构建器:用于输入请求的 URL、HTTP 方法、请求头、请求体等。响应区:显…...
生成requirements.txt
pip install pipreqs pipreqs ./ --encodingutf-8 --force python导出requirements.txt的几种方法总结...
ubuntu ceph部署
ubuntu ceph部署 参考文档:http://docs.ceph.org.cn/start/ 节点配置 1个mon节点,3个osd节点 安装前准备 安装ceph-deploy 添加 release key wget -q -O- https://download.ceph.com/keys/release.asc | sudo apt-key add -添加Ceph软件包源&…...
2024.7.8
2024.7.8 【追逐影子的人,自己就是影子 —— 荷马】 Monday 六月初三 讲的根本听不懂好吧! 目前只写了三道题(但是黑色 确实是没见过这么抽象的数据结构 Gregor and the Two Painters Number of Components Equal LCM Subsets 这个lcm确实…...
Spring 外部jar包Bean自动装配
Spring 外部jar包Bean自动装配 背景介绍 公共代码模块被作为jar包引入业务项目,前者定义的bean即使添加了Component注解由于不会被扫描到也就无法被Spring管理。此处通过Spring SPI机制来完成 使用 spring.factories 在外部 jar 包中创建 spring.factories 文件&a…...
2通道音频ADC解码芯片ES7243L、ES7243E、ES7243,用于低成本实现模拟麦克风转换为IIS数字话筒
前言: 音频解码芯片某创参考价格: ES7243L 500:¥1.36 / 个 ES7243E 500:¥1.66 / 个 ES7243 500: ¥1.91 / 个 其中ES7243L工作电压为1.8V,与其他两款的3.3V工作电压不同&…...
uniapp跨域问题解决
找到menifest文件,在文件的最后添加如下代码: // h5 解决跨域问题"h5":{"devServer": {"proxy": {"/adminapi": {"target": "https://www.demo.com", // 目标访问网址"changeOrigin…...
[C++][ProtoBuf][Proto3语法][一]详细讲解
目录 1.字段规则2.消息类型的定义与使用1.定义2.使用 3.enum类型1.语法2.定义时注意3.代码 1.字段规则 消息的字段可以⽤下⾯⼏种规则来修饰: singular:消息中可以包含该字段零次或⼀次(不超过⼀次) proto3语法中,字段默认使⽤该规则 repeat…...
千古雄文《渔樵问对》原文、译文、解析
邵雍《渔樵问对》:开悟奇文,揭示世界的终极意义 【邵雍《渔樵问对》:开悟奇文,揭示世界的终极意义】 邵雍(1011年1月21日-1077年7月27日,宋真宗大中祥符四年十二月二十五日戌时生至神宗熙宁十…...
uniapp 开发备忘录-防坑指南
uniapp 开发备忘录-防坑指南 npm run dev:mp-weixin 编译微信小程序报错: [plugin:uni:mp-using-component] Expected ‘,’ or ‘}’ after property value in JSON at position 解决方案:升级uniapp 到最新 alpha 版。(2024年7月13日&am…...
Simple_ReAct_Agent
参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。 Basic ReAct Agent(manual action) import openai import re import httpx import os from dotenv import load_dotenv, find_dotenvOPENAI_API_KEY os.getenv(OPEN…...
window wsl安装ubuntu
文章目录 wsl安装ubuntu什么是wsl安装wsl检查运行 WSL 2 的要求将 WSL 2 设置为默认版本查看并安装linux WSL2的使用如何查看linux文件wsl如何使用代理:方法1:方法2:通过 DNS 隧道来配置 WSL 的网络 如何将 WSL 接入局域网并与宿主机同网段使用VScode连接…...
postmessage()在同一域名下,传递消息给另一个页面
这里是同域名下,getmessage.html(发送信息)传递消息给index.html(收到信息,并回传收到信息) index.html页面 <!DOCTYPE html> <html><head><meta http-equiv"content-type"…...
初始redis:在Ubuntu上安装redis
1.先切换到root用户 使用su命令切换到root 2.使用apt命令来搜索redis相关的软件包 命令:apt search redis 3.下载redis 命令: apt install redis 在Ubuntu 20.04中 ,下载的redis版本是redis5 4.查看redis状态 命令: netst…...
生物素结合金纳米粒子(Bt@Au-NPs ) biotin-conjugated Au-NPs
一、定义与特点 定义:生物素结合金纳米粒子,简称BtAu-NPs或biotin-conjugated Au-NPs,是指通过特定的化学反应或物理方法将生物素修饰到金纳米粒子表面,形成稳定的纳米复合材料。 特点: 高稳定性:生物素的修…...
LeetCode热题100刷题9:25. K 个一组翻转链表、101. 对称二叉树、543. 二叉树的直径、102. 二叉树的层序遍历
25. K 个一组翻转链表 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), nex…...
PyJWT,一个基于JSON的轻量级安全通信方式的python库
目录 什么是JWT? JWT的构成 PyJWT库简介 安装PyJWT 生成JWT 验证JWT 使用PyJWT的高级功能 自定义Claims 错误处理 结语 什么是JWT? 在介绍PyJWT这个Python库之前,我们首先需要了解什么是JWT。JWT,全称JSON Web Token&am…...
Golang | Leetcode Golang题解之第223题矩形面积
题目: 题解: func computeArea(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 int) int {area1 : (ax2 - ax1) * (ay2 - ay1)area2 : (bx2 - bx1) * (by2 - by1)overlapWidth : min(ax2, bx2) - max(ax1, bx1)overlapHeight : min(ay2, by2) - max(ay1, by1)…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
Element-Plus:popconfirm与tooltip一起使用不生效?
你们好,我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip,产品要求是两个需要结合一起使用,也就是鼠标悬浮上去有提示文字,并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...
