当前位置: 首页 > news >正文

大语言模型系列-Transformer介绍

大语言模型系列:Transformer介绍

引言

在自然语言处理(NLP)领域,Transformer模型已经成为了许多任务的标准方法。自从Vaswani等人在2017年提出Transformer以来,它已经彻底改变了NLP模型的设计。本文将介绍Transformer模型的基本结构和关键技术细节,并通过具体的公式来阐述其工作原理。

Transformer模型概述

Transformer模型主要由编码器(Encoder)和解码器(Decoder)两个部分组成,每个部分又由多个相同的层(Layer)堆叠而成。每一层都包含两个子层:多头自注意力机制(Multi-Head Self-Attention Mechanism)和前馈神经网络(Feed-Forward Neural Network)。

编码器

编码器由N个相同的编码器层(Encoder Layer)堆叠而成。每个编码器层包含以下两个子层:

  1. 多头自注意力机制(Multi-Head Self-Attention Mechanism)
  2. 前馈神经网络(Feed-Forward Neural Network)

解码器

解码器也由N个相同的解码器层(Decoder Layer)堆叠而成。与编码器层类似,每个解码器层包含以下三个子层:

  1. 多头自注意力机制(Masked Multi-Head Self-Attention Mechanism)
  2. 多头注意力机制(Multi-Head Attention Mechanism)
  3. 前馈神经网络(Feed-Forward Neural Network)

注意力机制(Attention Mechanism)

注意力机制是Transformer的核心。它通过计算输入序列中每个位置的加权平均值来捕捉序列中不同位置之间的依赖关系。注意力机制的计算过程包括三个步骤:计算查询(Query)、键(Key)和值(Value)的线性变换,计算注意力权重,并对值进行加权求和。

公式

  1. 线性变换:

Q = X W Q , K = X W K , V = X W V Q = XW^Q, \quad K = XW^K, \quad V = XW^V Q=XWQ,K=XWK,V=XWV

其中,( X )是输入序列的表示,( W^Q )、( W^K )和( W^V )是可学习的参数矩阵。

  1. 注意力权重计算:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中, d k d_k dk是键的维度。

多头注意力机制(Multi-Head Attention Mechanism)

多头注意力机制通过引入多个注意力头(Attention Heads),可以在不同的子空间中并行计算注意力。多头注意力机制的公式如下:

  1. 分头计算:

head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QWiQ,KWiK,VWiV)

  1. 头的拼接:

    MultiHead ( Q , K , V ) = Concat ( head 1 , head 2 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,head2,,headh)WO

    其中,QKV是可学习的参数矩阵。

位置编码(Positional Encoding)

由于Transformer模型没有使用循环神经网络(RNN)或卷积神经网络(CNN),它不能直接捕捉序列中的位置信息。因此,Transformer通过添加位置编码(Positional Encoding)来引入位置信息。位置编码的公式如下:

P E ( p o s , 2 i ) = sin ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中, p o s pos pos是位置, i i i是维度索引, d m o d e l d_{model} dmodel是模型的维度。

前馈神经网络(Feed-Forward Neural Network)

在每个编码器层和解码器层中,前馈神经网络(FFN)通过两个线性变换和一个激活函数来处理每个位置的表示。前馈神经网络的公式如下:

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

其中, W 1 W_1 W1 W 2 W_2 W2 b 1 b_1 b1 b 2 b_2 b2是可学习的参数矩阵和偏置向量。

总结

Transformer模型通过自注意力机制和多头注意力机制,有效地捕捉序列中不同位置之间的依赖关系,并通过位置编码引入位置信息。它的并行计算能力使其在处理大规模数据时表现出色,已经成为NLP任务中的主流模型。

希望本文对您理解Transformer模型有所帮助。如果您有任何问题或建议,欢迎在评论区留言。


参考文献

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

相关文章:

大语言模型系列-Transformer介绍

大语言模型系列:Transformer介绍 引言 在自然语言处理(NLP)领域,Transformer模型已经成为了许多任务的标准方法。自从Vaswani等人在2017年提出Transformer以来,它已经彻底改变了NLP模型的设计。本文将介绍Transforme…...

JavaDS —— 顺序表ArrayList

顺序表 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。在物理和逻辑上都是连续的。 模拟实现 下面是我们要自己模拟实现的方法: 首先我们要创建一个顺序表,顺序表…...

Sphinx 搜索配置

官方文档 http://sphinxsearch.com/docs/sphinx3.html 支持中文,英文,日文,韩文,俄罗斯语搜索 版本是 官网3.6.1版本 文件 sphinx.conf.dist 的windows 配置,官网下载下来后微微配置即可。 # Minimal Sphinx confi…...

如何在不关闭防火墙的情况下,让两台设备ping通

问题现象 如题,做虚拟机实验的时候,有一台linux系统的虚拟机配置的ip地址是192.168.172.181 物理主机的ip地址是192.168.172.1 此时物理主机可以ping通虚拟机 但是虚拟机不能ping通物理主机 此时我们可以想到,有可能是物理主机防火墙的原因。…...

windows USB 设备驱动开发-USB 等时传输

客户端驱动程序可以生成 USB 请求块 (URB) 以在 USB 设备中向/从常时等量端点传输数据。虽然USB设备一向以非等时传输出名,USB提供的是一种串行数据,而非等时,但是USB仍然设计了等时传输的机制,但根据笔者的经验,等时传…...

【文件共享 windows和linux】Windows Server 2016上开启文件夹共享,并在CentOS 7.4上访问和下载文件

要在Windows Server 2016上开启文件夹共享,并在CentOS 7.4上访问和下载文件,请按照以下步骤操作: 在Windows Server 2016上开启文件夹共享: 启用SMB服务: 打开“服务器管理器”。选择“文件和存储服务” > “共享…...

【知网CNKI-注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...

【Python_GUI】tkinter常用组件——文本类组件

文本时窗口中必不可少的一部分,tkinter模块中,有3种常用的文本类组件,通过这3种组件,可以在窗口中显示以及输入单行文本、多行文本、图片等。 Label标签组件 Label组件的基本使用 Label组件是窗口中比较常用的组件,…...

zdppy+onlyoffice+vue3解决文档加载和文档强制保存时弹出警告的问题

解决过程 第一次排查 最开始排查的是官方文档说的 https://api.onlyoffice.com/editors/troubleshooting#key 解决方案。参考的是官方的 https://github.com/ONLYOFFICE/document-server-integration/releases/latest/download/Python.Example.zip 基于Django的Python代码。 …...

C语言从头学31——与字符串变量相关的几个函数

strlen、strcpy、strcat、strcmp、sprintf这些函数都是与字符串相关的,除了sprintf是定义在stdio.h中外,其余几个都定义在string.h中,比较新的编译器版本stdio.h中已经含有string.h的内容,所以编程时不需要再包含string.h这个头文…...

Laravel批量插入数据:提升数据库操作效率的秘诀

Laravel批量插入数据:提升数据库操作效率的秘诀 Laravel作为PHP的现代Web应用框架,提供了优雅而简洁的方法来处理数据库操作。批量插入数据是数据库操作中常见的需求,尤其是在处理大量数据时,批量插入可以显著提高性能。本文将详…...

OpenCV:解锁计算机视觉的魔法钥匙

OpenCV:解锁计算机视觉的魔法钥匙 在人工智能与图像处理的世界里,OpenCV是一个响当当的名字。作为计算机视觉领域的瑞士军刀,OpenCV以其丰富的功能库、跨平台的特性以及开源的便利性,成为了开发者手中不可或缺的工具。本文将深入…...

手写简单模拟mvc

目录结构: 两个注解类: Controller: package com.heaboy.annotation;import java.lang.annotation.*;/*** 注解没有功能只是简单标记* .RUNTIME 运行时还能看到* .CLASS 类里面还有,构建对象久没来了,这个说明…...

【FreeRTOS】同步互斥与通信 FreeRTOS提供的方法

目录 各类方法的对比队列事件组信号量互斥量任务通知 各类方法的本质 使用全局变量可以实现通信,但是使用全局变量会有一些缺陷。 那我们怎么保证通信的正确性呢??? 我们需要引入很多互斥的方法。除了互斥之外,还需要高…...

Kafka 面试题指南

Kafka 面试题指南 本文档提供了一份详细的 Kafka 面试题指南,涵盖了 Kafka 的核心概念、架构、配置、操作和实际应用场景等方面的内容。希望通过这份指南能够帮助你在 Kafka 面试中取得成功。 目录 Kafka 基础知识 什么是 Kafka?Kafka 的主要特点是什…...

2024年7月5日 (周五) 叶子游戏新闻

老板键工具来唤去: 它可以为常用程序自定义快捷键,实现一键唤起、一键隐藏的 Windows 工具,并且支持窗口动态绑定快捷键(无需设置自动实现)。 卸载工具 HiBitUninstaller: Windows上的软件卸载工具 《乐高地平线大冒险》为何不登陆…...

热门开源项目推荐:探索开源世界的精彩

热门开源项目推荐 随着开源程序的发展,越来越多的程序员开始关注并加入开源大模型的行列。开源不仅为个人学习和成长提供了绝佳的平台,也为整个技术社区带来了创新和进步。无论你是初学者还是经验丰富的开发者,参与开源项目都能让你受益匪浅…...

Codeforces Round #956 (Div. 2) and ByteRace 2024(A~D题解)

这次比赛也是比较吃亏的,做题顺序出错了,先做的第三个,错在第三个数据点之后,才做的第二个(因为当时有个地方没检查出来)所以这次比赛还是一如既往地打拉了 那么就来发一下题解吧 A. Array Divisibility …...

基于YOLOv9的脑肿瘤区域检测

数据集 脑肿瘤区域检测,我们直接采用kaggle公开数据集,Br35H 数据中已对医学图像中脑肿瘤位置进行标注 数据集我已经按照YOLO格式配置好,数据内容如下 数据集中共包含700张图像,其中训练集500张,验证集200张 模型训…...

阿里云 ECS 服务器的安全组设置

阿里云 ECS 服务器的安全组设置 缘由安全组多个安全组各司其职一些常见的IP段百度 IP 段华为云 IP 段搜狗蜘蛛 IP 段阿里云 IP 段 。。。 缘由 最近公司规模缩减,原有的托管在 IDC 机房的服务器,都被处理掉了,所有代码都迁移到了阿里云的云服…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...