“不要卷模型,要卷应用”之高考志愿填报智能体
摘要:李总的发言深刻洞察了当前人工智能领域的发展趋势与核心价值所在,具有高度的前瞻性和实践性。“大家不要卷模型,要卷应用”这一观点强调了在当前人工智能领域,应该更加注重技术的实际应用而非单纯的技术竞赛或模型优化。个性化应用将是AI时代的重要趋势之一,通过技术创新和个性化定制实现技术的深度应用和用户需求的精准满足。本文将以高考志愿填报智能体为例来设计一套方案,阐释技术的真正价值在于其能否被有效地应用于实际场景并解决具体问题。因此,我们应该更加注重技术的实际应用和效果评估而非单纯的技术竞赛或模型优化。只有这样才能推动人工智能技术的持续进步和广泛应用为社会发展做出更大的贡献。
关键字: 大模型 智能体 个性化应用
引言
李总的发言深刻洞察了当前人工智能领域的发展趋势与核心价值所在,具有高度的前瞻性和实践性。他的观点可以从以下几个方面进行理解:
-
从技术到应用的转变:李彦宏强调AI技术从辨别式向生成式的转变,这是一个重要的技术飞跃。生成式AI如ChatGPT等,展现了强大的内容生成能力,但这仅仅是技术发展的一个方面。更重要的是,这些技术如何被有效地应用到实际生活中,解决各行各业的具体问题,提升社会整体效率和人们的生活质量。这一转变要求我们从技术导向转向应用导向,关注技术的落地实施和实际效果。
-
避免“超级应用陷阱”:他指出过分追求用户日活跃量(DAU)而忽视应用的实际效果和产业价值的倾向,这是一个非常及时的提醒。在移动互联网时代,用户活跃度是评估应用成功与否的重要指标之一,但在AI时代,这一规律可能不再完全适用。一个应用的价值不应仅仅体现在用户数量上,更在于它能否为产业带来实质性的增益,促进产业升级和转型。
-
大模型技术的潜力与挑战:大模型技术作为AI领域的前沿技术,具有强大的学习、推理和生成能力,为AI应用提供了广阔的想象空间。然而,大模型也面临着训练成本高、能耗大、数据安全与隐私保护等挑战。因此,在推动大模型技术发展的同时,需要注重技术创新与伦理规范的平衡,确保技术的可持续发展和社会福祉的最大化。
-
个性化应用的重要性:李彦宏虽然没有直接提及个性化应用,但这一理念与他的发言精神高度契合。在AI时代,个性化应用将成为提升用户体验、满足个性化需求的重要手段。通过深入分析用户行为、偏好和需求,利用AI技术实现应用的个性化定制和智能推荐,将极大地提升应用的实用性和用户粘性。
综上所述,李总的发言为我们指明了AI技术发展的方向和价值所在。大模型技术作为AI领域的重要基石,其发展应与应用场景紧密结合,注重技术的实际应用效果和产业价值。同时,个性化应用将是AI时代的重要趋势之一,通过技术创新和个性化定制实现技术的深度应用和用户需求的精准满足。
高考志愿填报智能体
“大家不要卷模型,要卷应用”这一观点强调了在当前人工智能领域,应该更加注重技术的实际应用而非单纯的技术竞赛或模型优化。随着人工智能技术的飞速发展,特别是在大模型技术领域的突破,高考志愿填报这一传统而复杂的任务正逐步被智能化手段所优化。接下来将设计一款基于大模型的高考志愿填报智能体,通过综合分析考生信息、院校数据、专业趋势等多维度数据,为考生提供个性化、精准化的志愿填报建议,从而减轻考生及家长的决策负担,提高志愿填报的满意度和录取率。
技术方案概述
-
数据收集与预处理
- 考生信息:收集考生的高考成绩、科目偏好、兴趣爱好、职业规划等信息。
- 院校数据:整合全国各高校的基本信息、历年录取分数线、招生计划、专业设置、学费标准等。
- 专业趋势:分析各专业就业前景、薪资水平、行业发展趋势等。
- 政策动态:实时关注教育部及各省市高考政策变化,确保建议的时效性。
-
大模型选择与训练
- 基础模型:选用GPT、文心等成熟的预训练大模型作为基础,这些模型具备强大的自然语言处理能力和知识推理能力。
- 专项训练:针对高考志愿填报任务,对大模型进行专项训练,包括但不限于:
- 理解并解析考生需求的能力。
- 精准匹配院校、专业与考生信息的能力。
- 预测录取概率和风险评估的能力。
-
智能体设计与实现
- 交互界面:设计简洁易用的交互界面,支持文字、语音等多种输入方式,方便考生及家长使用。
- 功能模块:
- 信息输入:考生通过界面输入个人基本信息、成绩、偏好等。
- 智能分析:大模型根据输入信息,综合分析院校数据、专业趋势等,生成初步建议。
- 风险评估:内置风险评估模型,对每个建议进行录取概率预测和风险评估,帮助考生制定“冲、稳、保”策略。
- 结果展示:以图表、列表等形式展示推荐院校、专业及其详细信息,包括录取概率、专业介绍、就业前景等。
- 问答咨询:提供实时问答功能,解答考生及家长在志愿填报过程中的疑问。
-
持续优化与更新
- 数据更新:定期更新院校数据、专业趋势及政策动态,确保建议的准确性和时效性。
- 模型优化:根据用户反馈和实际效果,不断优化大模型的训练数据和算法,提升智能体的性能和准确性。
关键技术点
- 自然语言处理:利用大模型的自然语言处理能力,准确理解考生需求,生成自然语言形式的建议。
- 知识图谱:构建高考志愿填报领域的知识图谱,实现信息的快速检索和关联分析。
- 预测模型:开发基于大数据和机器学习的预测模型,准确预测各院校的录取分数线和录取概率。
- 风险评估:结合历史数据和专家经验,构建风险评估模型,为考生提供科学的志愿填报策略。
总结与展望
本技术方案通过引入大模型技术,设计了一款高考志愿填报智能体,旨在通过智能化手段优化志愿填报过程,提高考生及家长的满意度和录取率。未来,我们将持续优化智能体的性能和功能,引入更多先进的技术手段,如深度学习、强化学习等,以更好地服务于广大考生和家长。同时,我们也将关注数据安全与隐私保护问题,确保用户信息的安全性和隐私性。而不是用这种技术去写作文,除此之外,还有很多例子:
1. 物流与快递行业的智能优化
在物流与快递行业,利用大模型技术可以大幅提升订单处理效率和分拣准确性。例如,通过大模型分析订单数据,实现“一张图、一句话寄快递”的便捷操作,将原本繁琐的寄件流程简化为几秒钟内完成。这种应用不仅提升了用户体验,还显著降低了企业的运营成本,体现了技术在实际场景中的巨大潜力。
2. 金融行业的大模型应用
在金融领域,大模型技术可以用于风险控制和信贷评估等方面。通过分析海量的金融数据,大模型能够更准确地识别潜在的风险因素,为金融机构提供科学的决策支持。同时,大模型还可以应用于智能投顾领域,根据客户的投资偏好和风险承受能力提供个性化的投资建议。这些应用都直接提升了金融行业的服务质量和效率。
3. 医疗健康领域的智能诊断
在医疗健康领域,大模型技术可以用于辅助医生进行疾病诊断和治疗方案的制定。通过分析患者的病历数据和影像资料,大模型能够发现一些医生可能忽视的细节和关联因素,为医生提供更全面的诊断信息。此外,大模型还可以用于智能药物研发和个性化治疗方案的设计等方面,为医疗健康领域带来革命性的变化。
总结
以上例子充分说明了“大家不要卷模型,要卷应用”的重要性。在人工智能领域,技术的真正价值在于其能否被有效地应用于实际场景并解决具体问题。因此,我们应该更加注重技术的实际应用和效果评估而非单纯的技术竞赛或模型优化。只有这样才能推动人工智能技术的持续进步和广泛应用为社会发展做出更大的贡献。
相关文章:
“不要卷模型,要卷应用”之高考志愿填报智能体
摘要:李总的发言深刻洞察了当前人工智能领域的发展趋势与核心价值所在,具有高度的前瞻性和实践性。“大家不要卷模型,要卷应用”这一观点强调了在当前人工智能领域,应该更加注重技术的实际应用而非单纯的技术竞赛或模型优化。个性…...
k8s离线部署芋道源码后端
目录 概述实践Dockerfilek8s部署脚本 概述 本篇将对 k8s离线部署芋道源码后端 进行详细的说明,对如何构建 Dockerfile,如何整合 Nginx,如何整合 ingress 进行实践。 相关文章:[nacos在k8s上的集群安装实践] k8s离线部署芋道源码前…...
图论·Day01
P3371 P4779 P3371 【模板】单源最短路径(弱化版) 注意的点: 边有重复,选择最小边!对于SPFA算法容易出现重大BUG,没有负权值的边时不要使用!!! 70分代码 朴素板dijsk…...
hutool ExcelUtil 导出导入excel
引入依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.15</version></dependency>文件导入 public void savelist(String filepath,String keyname){ExcelReader reader Exce…...
打卡第7天-----哈希表
继续坚持✊,我现在看到leetcode上的题不再没有思路了,真的是思路决定出路,在做题之前一定要把思路梳理清楚。 一、四数相加 leetcode题目编号:第454题.四数相加II 题目描述: 给定四个包含整数的数组列表 A , B , C , …...
【Linux】WEB网站网络防火墙(WAF软件)Fail2ban:保护服务器免受恶意攻击的必备工具
随着互联网的迅速发展,服务器的安全性日益成为用户和管理员关注的焦点。恶意攻击者不断寻找机会侵入服务器,窃取敏感信息、破坏数据或者滥用系统资源。为了抵御这些威胁,许多安全工具应运而生,其中一款备受推崇的工具就是 Fail2ba…...
妙笔生词智能写歌词软件:创新助力还是艺术之殇?
在音乐创作日益普及和多样化的当下,各种辅助工具层出不穷,妙笔生词智能写歌词软件便是其中之一。那么,它到底表现如何呢? 妙笔生词智能写歌词软件(veve522)的突出优点在于其便捷性和高效性。对于那些灵感稍…...
力扣hot100-普通数组
文章目录 题目:最大子数组和方法1 动态规划方法2 题目:合并区间题解 题目:轮转数组方法1-使用额外的数组方法2-三次反转数组 题目:除自身以外数组的乘积方法1-用到了除法方法2-前后缀乘积法 题目:最大子数组和 原题链…...
深入浅出Transformer:大语言模型的核心技术
引言 随着自然语言处理(NLP)领域的不断发展,Transformer模型逐渐成为现代大语言模型的核心技术。无论是BERT、GPT系列,还是最近的T5和Transformer-XL,这些模型的背后都离不开Transformer架构。本文将详细介绍Transfor…...
MacOS隐藏文件打开指南
MacOS隐藏文件打开指南 方法一: 直接按下键盘上的【commandshift.】,这时候就可以在mac系统中就会自动显示隐藏的文件夹了 方法二: 在终端查看 ls -la...
grafana数据展示
目录 一、安装步骤 二、如何添加喜欢的界面 三、自动添加注册客户端主机 一、安装步骤 启动成功后 可以查看端口3000是否启动 如果启动了就在浏览器输入IP地址:3000 账号密码默认是admin 然后点击 log in 第一次会让你修改密码 根据自定义密码然后就能登录到界面…...
53-4 内网代理6 - frp搭建三层代理
前提:53-3 内网代理5 - frp搭建二级代理-CSDN博客 三级网络代理 在办公区入侵后,发现需要进一步渗透核心区网络(192.168.60.0/24),并登录域控制器的远程桌面。使用FRP在EDMZ区、办公区与核心区之间建立三级网络的SOCKS5代理,以便访问核心区的域控制器。 VPS上的FRP服…...
SQLite 命令行客户端 + HTA 实现简易UI
SQLite 命令行客户端 HTA 实现简易UI SQLite 客户端.hta目录结构参考资料 仅用于探索可行性,就只实现了 SELECT。 SQLite 客户端.hta <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; cha…...
TikTok小店推出“百万英镑俱乐部”,实力宠卖家!
TikTok Shop近期在英国市场重磅推出了“百万英镑俱乐部”激励计划,这一举措旨在通过一系列诱人福利,助力商家在TikTok平台上实现销售飞跃。该计划不仅彰显了TikTok Shop对于商家成长的深切关怀,更以实际行动诠释了“实力宠卖家”的承诺。 我…...
路径规划 | 基于蚁群算法的三维无人机航迹规划(Matlab)
目录 效果一览基本介绍程序设计参考文献 效果一览 基本介绍 基于蚁群算法的三维无人机航迹规划(Matlab)。 蚁群算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法。该算法通过模拟蚂蚁在寻找食物时…...
.Net C#执行JavaScript脚本
文章目录 前言一、安装二、执行 JavaScript 脚本三、与脚本交互四、JS 调用 C# 方法五、多线程使用总结 前言 ClearScript 是一个 .NET 平台下的开源库,用于在 C# 和其他 .NET 语言中执行脚本代码。它提供了一种方便和安全的方法来将脚本与应用程序集成,…...
企业应对策略:全面防御.DevicData-P-xxxxxx勒索病毒
引言 在数字化时代,网络安全已成为不可忽视的重要议题。随着互联网的普及,各种网络威胁层出不穷,其中勒索病毒以其独特的攻击方式和巨大的破坏性,给个人用户和企业带来了严重的经济损失和数据安全风险。在众多勒索病毒中ÿ…...
记一次mysql导出到达梦数据库
DM8管理工具 DM管理工具(官方)DBeaver - jdbc驱动 MySql迁移到DM8 使用官方DM数据迁移工具 新建迁移工程选择MySQL>DM填写mysql连接信息、添加dm连接信息执行 DM8数据脚本制作过程 使用DM管理工具 导出全部:进入对应模式>表>选…...
2024年高压电工证考试题库及高压电工试题解析
题库来源:安全生产模拟考试一点通公众号小程序 2024年高压电工证考试题库及高压电工试题解析是安全生产模拟考试一点通结合(安监局)特种作业人员操作证考试大纲和(质检局)特种设备作业人员上岗证考试大纲随机出的高压…...
完美解决ImportError: cannot import name ‘idnadata‘的正确解决方法,亲测有效!!!
完美解决ImportError: cannot import name idnadata’的正确解决方法,亲测有效!!! 亲测有效 完美解决ImportError: cannot import name idnadata的正确解决方法,亲测有效!!!报错问题…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)
崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题,不一定会立刻崩,但一旦积累,就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能,而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...
