大模型/NLP/算法面试题总结3——BERT和T5的区别?
1、BERT和T5的区别?
BERT和T5是两种著名的自然语言处理(NLP)模型,它们在架构、训练方法和应用场景上有一些显著的区别。以下是对这两种模型的详细比较:
架构
BERT(Bidirectional Encoder Representations from Transformers):
- 架构:BERT使用了Transformer的编码器部分,是一个纯编码器模型。它通过堆叠多个Transformer编码器层来生成文本的双向表示。
- 双向性:BERT是双向的,即在编码过程中,它同时考虑了左侧和右侧的上下文信息。具体来说,BERT使用的是Masked Language Model(MLM)训练方法,即在训练过程中随机屏蔽一些单词,模型需要预测被屏蔽的单词。
T5(Text-To-Text Transfer Transformer):
- 架构:T5使用了完整的Transformer架构,包括编码器和解码器。它的架构与标准的序列到序列(seq2seq)模型类似。
- 任务统一性:T5将所有的NLP任务都统一成文本到文本的格式。例如,文本分类任务可以转换成给定文本生成类别标签的任务,机器翻译任务则是将输入文本翻译成目标语言文本。
训练方法
BERT:
- 预训练任务:
- Masked Language Model(MLM):随机屏蔽输入中的一些单词,然后让模型预测这些单词。
- Next Sentence Prediction(NSP):让模型预测两个句子是否连续出现。
- 目标:BERT的训练目标是让模型学习到丰富的双向上下文表示,以便在下游任务中进行微调。
T5:
- 预训练任务:
- Text-to-Text:T5在大规模文本上进行预训练,将各种任务都转换成文本生成任务。例如,给定一段文本和一个问题,让模型生成答案。
- 多任务学习:通过多种预训练任务(如翻译、问答、摘要等),让模型学会在不同任务间共享知识。
- 目标:T5的目标是通过统一的文本生成框架来解决多种NLP任务,使得训练和微调过程更加一致。
应用场景
BERT:
- 下游任务:BERT主要用于需要文本表示的任务,例如文本分类、命名实体识别(NER)、问答系统和情感分析等。通常在特定任务上进行微调以达到最佳性能。
- 优点:BERT在捕捉文本的上下文表示方面表现出色,特别是在需要深入理解文本内容的任务中。
T5:
- 下游任务:T5适用于所有可以转化为文本生成的任务,例如机器翻译、文本摘要、文本生成和问答等。T5在处理多任务学习和需要生成文本的任务中表现出色。
- 优点:T5的统一框架使其在处理多种NLP任务时具有很强的灵活性和泛化能力。
性能与扩展性
BERT:
- 性能:BERT在许多NLP基准测试中表现优异,特别是在GLUE、SQuAD等任务上表现出色。
- 扩展性:BERT的双向性使其在理解复杂文本上下文时具有优势,但在处理生成任务时可能需要结合其他模型。
T5:
- 性能:T5在多任务学习和生成任务中表现优异,在GLUE、SuperGLUE、CNN/Daily Mail等基准测试中取得了很好的成绩。
- 扩展性:T5的文本到文本框架使其在处理多种任务时具有高度的扩展性和灵活性,能够统一处理各种输入和输出格式。
总结
- BERT:专注于编码任务,擅长理解文本上下文,适用于文本分类、NER、问答等需要文本表示的任务。
- T5:采用文本到文本的统一框架,适用于多任务学习和文本生成任务,具有很强的灵活性和扩展性。
相关文章:
大模型/NLP/算法面试题总结3——BERT和T5的区别?
1、BERT和T5的区别? BERT和T5是两种著名的自然语言处理(NLP)模型,它们在架构、训练方法和应用场景上有一些显著的区别。以下是对这两种模型的详细比较: 架构 BERT(Bidirectional Encoder Representation…...
vue3项目打包的时候,怎么区别测试环境,和本地环境
在Vue 3项目中区别测试环境和本地环境,并标记接口的方法可以通过环境变量来实现。 首先,你可以在你的项目根目录下创建一个.env文件,并定义你的环境变量。比如,你可以创建.env.local作为本地环境的配置文件,.env.test…...
小特性 大用途 —— YashanDB JDBC驱动的这些特性你都get了吗?
在现代数据库应用场景中,系统的高可用性和负载均衡是确保服务稳定性的基石。YashanDB JDBC驱动通过其创新的多IP配置特性,为用户带来了简洁而强大的解决方案,以实现数据库连接的高可用性和负载均衡,满足企业级应用的高要求。 01 …...
全网最全的软件测试面试八股文
前面看到了一些面试题,总感觉会用得到,但是看一遍又记不住,所以我把面试题都整合在一起,都是来自各路大佬的分享,为了方便以后自己需要的时候刷一刷,不用再到处找题,今天把自己整理的这些面试题…...
VMware虚拟机配置桥接网络
转载:虚拟机桥接网络配置 一、VMware三种网络连接方式 VMware提供了三种网络连接方式,VMnet0, VMnet1, Vmnet8,分别代表桥接,Host-only及NAT模式。在VMware的编辑-虚拟网络编辑器可看到对应三种连接方式的设置(如下图…...
华为机考真题 -- 攀登者1
题目描述: 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 一个山脉可能有多座山峰(山峰定义:高度大于相邻位置的高度,或在地图边界且高度大于相邻的高度)。登山者…...
深入理解Python密码学:使用PyCrypto库进行加密和解密
深入理解Python密码学:使用PyCrypto库进行加密和解密 引言 在现代计算领域,信息安全逐渐成为焦点话题。密码学,作为信息保护的关键技术之一,允许我们加密(保密)和解密(解密)数据。P…...
MMSegmentation笔记
如何训练自制数据集? 首先需要在 mmsegmentation/mmseg/datasets 目录下创建一个自制数据集的配置文件,以我的苹果叶片病害分割数据集为例,创建了mmsegmentation/mmseg/datasets/appleleafseg.py 可以看到,这个配置文件主要定义…...
Python基础语法:变量和数据类型详解(整数、浮点数、字符串、布尔值)①
文章目录 变量和数据类型详解(整数、浮点数、字符串、布尔值)一、变量二、数据类型1. 整数(int)2. 浮点数(float)3. 字符串(str)4. 布尔值(bool) 三、类型转换…...
【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——红黑树
目录 1 -> 红黑树 1.1 -> 红黑树的概念 1.2 -> 红黑树的性质 1.3 -> 红黑树节点的定义 1.4 -> 红黑树的结构 1.5 -> 红黑树的插入操作 1.6 -> 红黑树的验证 1.8 -> 红黑树与AVL树的比较 2 -> 红黑树模拟实现STL中的map与set 2.1 -> 红…...
MySQL DDL
数据库 1 创建数据库 CREATE DATABASE 数据库名 CREATE DATABASE IF NOT EXISTS 数据库名;(判断是否存在) CREATE DATABASE 数据库名 CHARACTER SET 字符 2 查看数据库 SHOW DATABASES; 查看某个数据库的信息 SHOW CAEATE DATABASE 数据库名 3 修改数据库 …...
从模型到应用:李彦宏解读AI时代的新趋势与挑战
如何理解李彦宏说的“不要卷模型,要卷应用” 开源项目的机遇与挑战 7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议在上海世博中心举办。在产业发展主论坛上,百度创始人、董事长兼首席执行官李彦宏呼吁:“大家不要卷…...
C++ STL 随机数用法介绍
目录 一:C语言中的随机数 二:C中的随机数 1. 生成随机数的例子 2. 随机数引擎 3. 随机数引擎适配器 4. C中预定义的随机数引擎,引擎适配器 5. 随机数分布 一:C语言中的随机数 <stdlib.h>//初始化随机种子 srand(static_ca…...
容器之docker compose
Docker Compose 是一个用于定义和运行多容器 Docker 应用的工具。通过一个 YAML 文件,您可以配置应用程序需要的所有服务,并使用单个命令来创建和启动这些服务。以下是对 Docker Compose 的详细介绍: 核心概念 服务(Services&am…...
MIT机器人运动控制原理浅析-人形机器人
MIT人形机器人基于开发改进的执行器全新设计,通过可感知执行器运动动力学移动规划器(Actuator-Aware Kino-Dynamic Motion Planner)及着地控制器(Landing Controller)等实现机器人的运动控制。 机器人设计 机器人高0.7米,21KG(四肢重量 25%),…...
开源 WAF 解析:选择最适合你的防护利器
前言 随着网络安全风险的增加,Web 应用防火墙(WAF)成为保护网站和应用程序免受攻击的关键工具。在众多的选择中,开源 WAF 以其灵活性、可定制性和成本效益备受青睐。本文将深入探讨几种主流开源 WAF 解决方案,帮助你选…...
AirPods Pro新功能前瞻:iOS 18的五大创新亮点
随着科技的不断进步,苹果公司一直在探索如何通过创新提升用户体验。iOS 18的推出,不仅仅是iPhone的一次系统更新,更是苹果生态链中重要一环——AirPods Pro的一次重大升级。 据悉,iOS 18将为AirPods Pro带来五项新功能࿰…...
JavaScript中的可选链操作符
在JavaScript中,?. 被称为可选链操作符(Optional Chaining Operator)。它允许你访问对象的深层属性而不必显式地检查每一层属性是否存在。如果链中的某个属性不存在,表达式将短路返回undefined,而不是抛出一个TypeErr…...
huggingface笔记:gpt2
0 使用的tips GPT-2是一个具有绝对位置嵌入的模型,因此通常建议在输入的右侧而不是左侧填充GPT-2是通过因果语言建模(CLM)目标进行训练的,因此在预测序列中的下一个标记方面非常强大 利用这一特性,GPT-2可以生成语法连…...
一次业务的批量数据任务的处理优化
文章目录 一次业务的批量数据任务的处理优化业务背景1.0版本 分批处理模式2.0版本 平衡任务队列模式3.0版本 优化调度平衡任务队列模式总结 一次业务的批量数据任务的处理优化 业务背景 一个重新生成所有客户的财务业务指标数据的批量数据处理任务。 1.0版本 分批处理模式 …...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...
js 设置3秒后执行
如何在JavaScript中延迟3秒执行操作 在JavaScript中,要设置一个操作在指定延迟后(例如3秒)执行,可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法,它接受两个参数: 要执行的函数&…...
第14节 Node.js 全局对象
JavaScript 中有一个特殊的对象,称为全局对象(Global Object),它及其所有属性都可以在程序的任何地方访问,即全局变量。 在浏览器 JavaScript 中,通常 window 是全局对象, 而 Node.js 中的全局…...
MCP和Function Calling
MCP MCP(Model Context Protocol,模型上下文协议) ,2024年11月底,由 Anthropic 推出的一种开放标准,旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而…...
