当前位置: 首页 > news >正文

夸克升级“超级搜索框” 推出AI搜索为中心的一站式AI服务

大模型时代,生成式AI如何革新搜索产品?阿里智能信息事业群旗下夸克“举手答题”。7月10日,夸克升级超级搜索框”,推出以AI搜索为中心的一站式AI服务,为用户提供从检索、创作、总结,到编辑、存储、分享的一体化信息服务价值。

“能回答、能创作、能总结的超级搜索框,是夸克对AI搜索的新定义。”阿里智能信息事业群总裁吴嘉表示,模型、数据、场景等优势,推动夸克加速革新搜索产品,创造更大用户价值。跨过大模型应用全新体验的临界点,夸克全面进入AI时代,一站式AI服务的创新涌现将滔滔不绝。

全新AI搜索一框实现回答创作、总结

过往,搜索引擎依据关键,提供网站列表排序。反复挑选、点击、阅读,以及大量不相关结果,成为用户高效获取信息的拦路虎复杂问题也很难到满意的回答

AI技术跃迁点燃了搜索的价值焕新。用户打开夸克7.0版搜索框,输入问题即可体验智能回答,还有AI写作、文件总结、视频总结、拍题讲解功能。一个“超级搜索框”集纳了智能回答、智能创作和智能总结三大能力

其中,智能回答能够更好地理解用户意图,聚合全网优质内容,更精准、直接、高效地提供图文、视频等。尤其针对复杂逻辑分析和跨学科知识,智能回答更能发挥AI的综合回答能力为用户呈现准确、丰富的结果。

智能创作方面夸克AI搜索满足用户各类主题、题材、篇幅的高频写作创作需求,包括文案创作、文档写作、PPT写作、简历制作等,让用户直接得到所需内容。

智能总结方面,面对几十万字长文专业信息,夸克数秒钟就整理全文摘要。更惊喜的是,夸克还支持最长5小时视频字幕导出、分段总结、整体总结、生成脑图、抽取课件PPT等,提升工作学习效率

此前,夸克升级高考AI搜索,“山东高考580分能否上985”类似问题的个性化志愿推荐能力大大提升。6月高考季,夸克高考AI搜索使用量超过1亿次

夸克产品负责人郑嗣寿介绍,信息检索、创作和总结一直是用户的核心需求,AI搜索让人与信息距离更短。夸克始终坚持在搜索上的价值探索,不断从搜索框中生长出新内容、新工具“让万事万物都有答案,让答案都有迹可循”。

一站式AI服务,满足信息检索、生成处理

始于框但不止于框!从创立之初定位智能搜索,夸克持续突破搜索框的形态与能力边界,在“智能工具+内容+服务”模式下,上新一系列内容产品与智能工具。

站在AI时代,夸克以全新的视角去看待产品和需求。夸克7.0版以AI搜索为中心不断延展功能场景和服务能力,面向用户信息检索、生成处理的全域、多元需求,一体化设计产品,一站式提供AI服务

一个“超级搜索框实现回答、创作、总结之外,夸克一站式提供网盘、扫描、文档、CueMe、学习助手、健康助手等内容产品和智能工具,为用户提供从检索、创作、总结,到编辑、存储、分享的一体化信息服务价值。

用户撰写年中总结PPT,在夸克搜索“年中总结PPT模版”,即可进入AI PPT一键创作,调整PPT内容,最后导出文件,存储和发送。在“超级搜索框”中使用AI写作,用户得到的个性化创作内容,可以保存Word文档,在夸克网盘编辑、转换格式、分享,告别了多场景反复跳转的割裂体验

此外,在手机、电脑平板等多个终端上,多端一体的夸克正在逐步构建中,确保用户在不同客户端上都能享受到好用的、高质量的信息服务。

面向用户设计产品,革新性搜索加速迭代

满足用户最基础、最广泛的信息需求,AI搜索与大语言模型能力的契合已成为行业共识。面向用户创新价值以下一代搜索为远景目标,夸克AI搜索长期积累了四个方面的能力与资源优势。

模型能力方面,夸克大模型去年一经发布即登顶各大性能评测榜,并持续面向用户场景深度迭代提升性能搜索能力上,夸克积累了用户理解、内容生态、安全合规等全面能力数据能力上,夸克多年来在知识、经验、健康、题目等领域拥有海量的优质数据应用场景方面,夸克长期沉淀通用搜索和健康、教育、文档等垂直领域的众多场景,且拥有大规模用户群体。

“搜索是个生生不息的业务,AI搜索才刚刚开始,夸克AI搜索同样处在全新阶段的开始。”郑嗣寿表示,夸克会加速效果迭代和产品升级,给用户更快更准的搜索体验。他透露,在多模态交互、内容生态建设、多端一体等方面,夸克将进一步加快产品创新节奏,用户创造无处不在的信息服务价值。

相关文章:

夸克升级“超级搜索框” 推出AI搜索为中心的一站式AI服务

大模型时代,生成式AI如何革新搜索产品?阿里智能信息事业群旗下夸克“举手答题”。7月10日,夸克升级“超级搜索框”,推出以AI搜索为中心的一站式AI服务,为用户提供从检索、创作、总结,到编辑、存储、分享的一…...

element-ui el-select选择器组件下拉框增加自定义按钮

element-ui el-select选择器组件下拉框增加自定义按钮 先看效果 原理&#xff1a;在el-select下添加禁用的el-option&#xff0c;将其value绑定为undefined&#xff0c;然后覆盖el-option禁用状态下的默认样式即可 示例代码如下&#xff1a; <template><div class…...

Python基于you-get下载网页上的视频

​ 1.python 下载地址 下载 : https://www.python.org/downloads/ 2. 配置环境变量 配置 python_home 地址 配置 python_scripts 地址 在path 中加入对应配置 3. 验证 ​ C:\Users>python --version Python 3.12.4C:\Users>wheel version wheel 0.43.04. 下载 c…...

大模型/NLP/算法面试题总结3——BERT和T5的区别?

1、BERT和T5的区别&#xff1f; BERT和T5是两种著名的自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;它们在架构、训练方法和应用场景上有一些显著的区别。以下是对这两种模型的详细比较&#xff1a; 架构 BERT&#xff08;Bidirectional Encoder Representation…...

vue3项目打包的时候,怎么区别测试环境,和本地环境

在Vue 3项目中区别测试环境和本地环境&#xff0c;并标记接口的方法可以通过环境变量来实现。 首先&#xff0c;你可以在你的项目根目录下创建一个.env文件&#xff0c;并定义你的环境变量。比如&#xff0c;你可以创建.env.local作为本地环境的配置文件&#xff0c;.env.test…...

小特性 大用途 —— YashanDB JDBC驱动的这些特性你都get了吗?

在现代数据库应用场景中&#xff0c;系统的高可用性和负载均衡是确保服务稳定性的基石。YashanDB JDBC驱动通过其创新的多IP配置特性&#xff0c;为用户带来了简洁而强大的解决方案&#xff0c;以实现数据库连接的高可用性和负载均衡&#xff0c;满足企业级应用的高要求。 01 …...

全网最全的软件测试面试八股文

前面看到了一些面试题&#xff0c;总感觉会用得到&#xff0c;但是看一遍又记不住&#xff0c;所以我把面试题都整合在一起&#xff0c;都是来自各路大佬的分享&#xff0c;为了方便以后自己需要的时候刷一刷&#xff0c;不用再到处找题&#xff0c;今天把自己整理的这些面试题…...

VMware虚拟机配置桥接网络

转载&#xff1a;虚拟机桥接网络配置 一、VMware三种网络连接方式 VMware提供了三种网络连接方式&#xff0c;VMnet0, VMnet1, Vmnet8&#xff0c;分别代表桥接&#xff0c;Host-only及NAT模式。在VMware的编辑-虚拟网络编辑器可看到对应三种连接方式的设置&#xff08;如下图…...

华为机考真题 -- 攀登者1

题目描述: 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 一个山脉可能有多座山峰(山峰定义:高度大于相邻位置的高度,或在地图边界且高度大于相邻的高度)。登山者…...

深入理解Python密码学:使用PyCrypto库进行加密和解密

深入理解Python密码学&#xff1a;使用PyCrypto库进行加密和解密 引言 在现代计算领域&#xff0c;信息安全逐渐成为焦点话题。密码学&#xff0c;作为信息保护的关键技术之一&#xff0c;允许我们加密&#xff08;保密&#xff09;和解密&#xff08;解密&#xff09;数据。P…...

MMSegmentation笔记

如何训练自制数据集&#xff1f; 首先需要在 mmsegmentation/mmseg/datasets 目录下创建一个自制数据集的配置文件&#xff0c;以我的苹果叶片病害分割数据集为例&#xff0c;创建了mmsegmentation/mmseg/datasets/appleleafseg.py 可以看到&#xff0c;这个配置文件主要定义…...

Python基础语法:变量和数据类型详解(整数、浮点数、字符串、布尔值)①

文章目录 变量和数据类型详解&#xff08;整数、浮点数、字符串、布尔值&#xff09;一、变量二、数据类型1. 整数&#xff08;int&#xff09;2. 浮点数&#xff08;float&#xff09;3. 字符串&#xff08;str&#xff09;4. 布尔值&#xff08;bool&#xff09; 三、类型转换…...

【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——红黑树

目录 1 -> 红黑树 1.1 -> 红黑树的概念 1.2 -> 红黑树的性质 1.3 -> 红黑树节点的定义 1.4 -> 红黑树的结构 1.5 -> 红黑树的插入操作 1.6 -> 红黑树的验证 1.8 -> 红黑树与AVL树的比较 2 -> 红黑树模拟实现STL中的map与set 2.1 -> 红…...

MySQL DDL

数据库 1 创建数据库 CREATE DATABASE 数据库名 CREATE DATABASE IF NOT EXISTS 数据库名;&#xff08;判断是否存在) CREATE DATABASE 数据库名 CHARACTER SET 字符 2 查看数据库 SHOW DATABASES; 查看某个数据库的信息 SHOW CAEATE DATABASE 数据库名 3 修改数据库 …...

从模型到应用:李彦宏解读AI时代的新趋势与挑战

如何理解李彦宏说的“不要卷模型&#xff0c;要卷应用” 开源项目的机遇与挑战 7月4日&#xff0c;2024世界人工智能大会暨人工智能全球治理高级别会议在上海世博中心举办。在产业发展主论坛上&#xff0c;百度创始人、董事长兼首席执行官李彦宏呼吁&#xff1a;“大家不要卷…...

C++ STL 随机数用法介绍

目录 一&#xff1a;C语言中的随机数 二&#xff1a;C中的随机数 1. 生成随机数的例子 2. 随机数引擎 3. 随机数引擎适配器 4. C中预定义的随机数引擎&#xff0c;引擎适配器 5. 随机数分布 一&#xff1a;C语言中的随机数 <stdlib.h>//初始化随机种子 srand(static_ca…...

容器之docker compose

Docker Compose 是一个用于定义和运行多容器 Docker 应用的工具。通过一个 YAML 文件&#xff0c;您可以配置应用程序需要的所有服务&#xff0c;并使用单个命令来创建和启动这些服务。以下是对 Docker Compose 的详细介绍&#xff1a; 核心概念 服务&#xff08;Services&am…...

MIT机器人运动控制原理浅析-人形机器人

MIT人形机器人基于开发改进的执行器全新设计&#xff0c;通过可感知执行器运动动力学移动规划器(Actuator-Aware Kino-Dynamic Motion Planner)及着地控制器(Landing Controller)等实现机器人的运动控制。 机器人设计 机器人高0.7米&#xff0c;21KG(四肢重量 25%)&#xff0c;…...

开源 WAF 解析:选择最适合你的防护利器

前言 随着网络安全风险的增加&#xff0c;Web 应用防火墙&#xff08;WAF&#xff09;成为保护网站和应用程序免受攻击的关键工具。在众多的选择中&#xff0c;开源 WAF 以其灵活性、可定制性和成本效益备受青睐。本文将深入探讨几种主流开源 WAF 解决方案&#xff0c;帮助你选…...

AirPods Pro新功能前瞻:iOS 18的五大创新亮点

随着科技的不断进步&#xff0c;苹果公司一直在探索如何通过创新提升用户体验。iOS 18的推出&#xff0c;不仅仅是iPhone的一次系统更新&#xff0c;更是苹果生态链中重要一环——AirPods Pro的一次重大升级。 据悉&#xff0c;iOS 18将为AirPods Pro带来五项新功能&#xff0…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...