当前位置: 首页 > news >正文

图文讲解IDEA如何导入JDBC驱动包

前言

学习JDBC编程,势必要学会如何导入驱动包,这里笔者用图文的方式来介绍

视频版本在这里

50秒教你怎么导入驱动包然后进行JDBC编程的学习_哔哩哔哩_bilibili

忘记录音频了,大伙凑合着看

下载驱动包

https://mvnrepository.com/artifact/mysql/mysql-connector-java

去中央仓库随便下一个你能下载下来的版本,然后把他存到一个你随时可以取得到的文件夹中

这是笔者下载好的

打开IDEA

 现在,我们打开我们的IDEA

 右键项目Test,新建目录lib

 

 复制我们的驱动包到lib

 将它设置为库

 可以看到,导入成功了

导入成功后,就可以使用JDBC编程了

多练练就会了 

相关文章:

图文讲解IDEA如何导入JDBC驱动包

前言 学习JDBC编程,势必要学会如何导入驱动包,这里笔者用图文的方式来介绍 视频版本在这里 50秒教你怎么导入驱动包然后进行JDBC编程的学习_哔哩哔哩_bilibili 忘记录音频了,大伙凑合着看 下载驱动包 https://mvnrepository.com/artifact/mysql/mysql-connector-java 去中…...

java.lang.NullPointerException: null cannot be cast to non-null type kotlin.Int

java.lang.NullPointerException: null cannot be cast to non-null type kotlin.Int fun main(args: Array<String>) {var any1: Any?any1 nullval n1 any1 as? Int ?: -2024println(n1)kotlin.runCatching {var any2: Any?any2 nullval n2 any2 as Intprintln(…...

scrapy写爬虫

Scrapy是一个用于爬取网站数据并提取结构化信息的Python框架 一、Scrapy介绍 1.引擎&#xff08;Engine&#xff09; – Scrapy的引擎是控制数据流和触发事件的核心。它管理着Spider发送的请求和接收的响应&#xff0c;以及处理Spider生成的Item。引擎是Scrapy运行的驱动力。…...

Mybatis study

一、Mybatis Plus mybatis-plus指定实体类字段不查询 加标签 TableField(exist false) Spring Data Jpa学习 干我们这行&#xff0c;啥时候懈怠&#xff0c;就意味着长进的停止&#xff0c;长进的停止就意味着被淘汰&#xff0c;只能往前冲&#xff0c;直到凤凰涅槃的一天&am…...

【论文速读】《面向深度学习的联合消息传递与自编码器》

这篇文章来自华为的渥太华无线先进系统能力中心和无线技术实验室&#xff0c;作者中有大名鼎鼎的童文。 一、自编码架构的全局收发机面临的主要问题 文章对我比较有启发的地方&#xff0c;是提到自编码架构的全局收发机面临的主要问题&#xff1a; 问题一&#xff1a;基于随…...

防御---001

一、实验拓扑二、要求 1&#xff0c;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内(9:00 - 18:00)可以访问&#xff0c;生产区的的设备全天可以访问. 2&#xff0c;生产区不允许访问互联网&#xff0c;办公区和游客区允许访问互联网 3,办公区设备10.0.2.10不允许访问DMZ…...

DNS 杂谈

一、定义 DNS&#xff08;Domain Name System&#xff09;&#xff0c;域名系统&#xff0c;该系统记录域名和Ip地址的相互映射关系。用户访问互联网时&#xff0c;通过域名地址得到对应的IP地址&#xff0c;这个过程称为域名解析。DNS运行于UDP协议之上&#xff0c;使用的端口…...

docker笔记2

docker笔记2 一、阿里云镜像配置二、docker基本原理1.docker是如何启动一个容器的2.docker的底层原理 三、镜像命令总结 一、阿里云镜像配置 配置镜像的目的 由于Docker Hub等公共镜像仓库的服务器可能位于国外&#xff0c;直接从中拉取镜像时可能会遇到网络延迟或不稳定的问…...

数字统计

import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别// 注意 while 处理多个 caseint a in.nextInt();i…...

Git 使用问题

Git 使用问题 1, 网络问题 1, 网络问题 # 报错如下&#xff1a; fatal: unable to access https://github.com/xianglingliwei/HRNet.git/: Failed to connect to github.com port 443 after 21044 ms: Couldnt connect to server在不能正常访问Github的区域&#xff0c;需要设…...

JMH325【剑侠情缘3】第2版80级橙武网游单机更稳定亲测视频安装教学更新整合收集各类修改教学补丁兴趣可以慢慢探索

资源介绍&#xff1a; 是否需要虚拟机&#xff1a;是 文件大小&#xff1a;压缩包约14G 支持系统&#xff1a;win10、win11 硬件需求&#xff1a;运行内存8G 4核及以上CPU独立显卡 下载方式&#xff1a;百度网盘 任务修复&#xff1a; 1&#xff0c;掌门任务&#xff08…...

大数据专业创新人才培养体系的探索与实践

一、引言 随着大数据技术的迅猛发展&#xff0c;其在各行各业中的应用日益广泛&#xff0c;对大数据专业人才的需求也日益增长。我国高度重视大数据产业的发展&#xff0c;将大数据作为国家战略资源&#xff0c;推动大数据与各行业的深度融合。教育部也积极响应国家战略&#…...

MySQL 中的 DDL、DML、DQL 和 DCL

文章目录 1. 数据定义语言&#xff08;DDL&#xff09;2. 数据操作语言&#xff08;DML&#xff09;3. 数据查询语言&#xff08;DQL&#xff09;4. 数据控制语言&#xff08;DCL&#xff09;总结 在 MySQL 数据库管理系统中&#xff0c;SQL 语句可以根据其功能分为不同的类别&…...

基础架构服务API:降低成本,提升业务效益

基础架构服务API的应用可以显著降低企业的成本&#xff0c;并提升业务效益。通过使用这些API&#xff0c;企业可以充分利用云计算、自动化部署和资源管理等功能&#xff0c;从而减少了传统基础设施所需的大量投资和维护成本。这些API还提供了弹性扩展和自动化功能&#xff0c;使…...

Redis IO多路复用

0、前言 本文所有代码可见 > 【gitee code demo】 本文涉及的主题&#xff1a; 1、BIO、NIO的业务实践和缺陷 2、Redis IO多路复用&#xff1a;redis快的主要原因 3、epoll 架构 部分图片 via 【epoll 原理分析】 1、BIO单线程版 1.1 业务代码 client client代码相同…...

如何在Vue中实现拖拽功能?

Vue.js是一款流行的JavaScript框架&#xff0c;用于构建用户界面。其中一个常见的需求是在Vue中实现拖拽功能&#xff0c;让用户可以通过拖拽元素来进行交互。今天&#xff0c;我们就来学习如何在Vue中实现这一功能。 首先&#xff0c;我们需要明白拖拽功能的基本原理&#xf…...

在Linux下使用Docker部署chirpstack

目录 一、前言 二、chirpstack 1、chirpstack是什么 2、chirpstack组件 3、为什么选择Docker部署 三、Linux下部署过程 四、web界面部署过程 一、前言 本篇文章我是在Linux下使用 Docker 进行部署chirpstack&#xff0c;chirpstack采用的是v4 版本&#xff0c;v4 版本 与…...

《昇思25天学习打卡营第14天|计算机视觉-ShuffleNet图像分类》

FCN图像语义分割&ResNet50迁移学习&ResNet50图像分类 当前案例不支持在GPU设备上静态图模式运行&#xff0c;其他模式运行皆支持。 ShuffleNet网络介绍 ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型&#xff0c;和MobileNet, SqueezeNet等一样主要应用在移动端…...

将字符串写入结构体变量中

将字符串写入结构体变量中&#xff0c;主要涉及到结构体中字符数组&#xff08;或指针&#xff09;的使用。 一、使用字符数组 假设你有一个结构体&#xff0c;它包含一个字符数组来存储字符串&#xff1a; #include <stdio.h> #include <string.h> // 用于st…...

iPhone 16 Pro系列将标配潜望镜头:已开始生产,支持5倍变焦

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 更多资源欢迎关注 7月6日消息&#xff0c;据DigiTimes最新报道&#xff0c;苹果将在iPhone 16 Pro中引入iPhone 15 Pro Max同款5倍光学变焦四棱镜潜望镜头。 报道称&#xff0c;目前苹果已经将模组订单交至大立光电和玉…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...