《昇思25天学习打卡营第14天|计算机视觉-ShuffleNet图像分类》
FCN图像语义分割&ResNet50迁移学习&ResNet50图像分类
当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。
ShuffleNet网络介绍
ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
了解ShuffleNet更多详细内容,详见论文ShuffleNet。
如下图所示,ShuffleNet在保持不低的准确率的前提下,将参数量几乎降低到了最小,因此其运算速度较快,单位参数量对模型准确率的贡献非常高。
图片来源:Bianco S, Cadene R, Celona L, et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access, 2018, 6: 64270-64277.
模型架构
ShuffleNet最显著的特点在于对不同通道进行重排来解决Group Convolution带来的弊端。通过对ResNet的Bottleneck单元进行改进,在较小的计算量的情况下达到了较高的准确率。
Pointwise Group Convolution
Group Convolution(分组卷积)原理如下图所示,相比于普通的卷积操作,分组卷积的情况下,每一组的卷积核大小为in_channels/g*k*k,一共有g组,所有组共有(in_channels/g*k*k)*out_channels个参数,是正常卷积参数的1/g。分组卷积中,每个卷积核只处理输入特征图的一部分通道,其优点在于参数量会有所降低,但输出通道数仍等于卷积核的数量。
图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.
Depthwise Convolution(深度可分离卷积)将组数g分为和输入通道相等的in_channels
,然后对每一个in_channels
做卷积操作,每个卷积核只处理一个通道,记卷积核大小为1*k*k,则卷积核参数量为:in_channels*k*k,得到的feature maps通道数与输入通道数相等;
Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组的卷积核大小为 1 × 1 1\times 1 1×1,卷积核参数量为(in_channels/g*1*1)*out_channels。
from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensorclass GroupConv(nn.Cell):def __init__(self, in_channels, out_channels, kernel_size,stride, pad_mode="pad", pad=0, groups=1, has_bias=False):super(GroupConv, self).__init__()self.groups = groupsself.convs = nn.CellList()for _ in range(groups):self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,kernel_size=kernel_size, stride=stride, has_bias=has_bias,padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))def construct(self, x):features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)outputs = ()for i in range(self.groups):outputs = outputs + (self.convs[i](features[i].astype("float32")),)out = ops.cat(outputs, axis=1)return out
Channel Shuffle
Group Convolution的弊端在于不同组别的通道无法进行信息交流,堆积GConv层后一个问题是不同组之间的特征图是不通信的,这就好像分成了g个互不相干的道路,每一个人各走各的,这可能会降低网络的特征提取能力。这也是Xception,MobileNet等网络采用密集的1x1卷积(Dense Pointwise Convolution)的原因。
为了解决不同组别通道“近亲繁殖”的问题,ShuffleNet优化了大量密集的1x1卷积(在使用的情况下计算量占用率达到了惊人的93.4%),引入Channel Shuffle机制(通道重排)。这项操作直观上表现为将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。
如下图所示,对于g组,每组有n个通道的特征图,首先reshape成g行n列的矩阵,再将矩阵转置成n行g列,最后进行flatten操作,得到新的排列。这些操作都是可微分可导的且计算简单,在解决了信息交互的同时符合了ShuffleNet轻量级网络设计的轻量特征。
为了阅读方便,将Channel Shuffle的代码实现放在下方ShuffleNet模块的代码中。
ShuffleNet模块
如下图所示,ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), ©的更改:
-
将开始和最后的 1 × 1 1\times 1 1×1卷积模块(降维、升维)改成Point Wise Group Convolution;
-
为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;
-
降采样模块中, 3 × 3 3 \times 3 3×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为2的 3 × 3 3\times 3 3×3平均池化,并把相加改成拼接。
class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x
构建ShuffleNet网络
ShuffleNet网络结构如下图所示,以输入图像 224 × 224 224 \times 224 224×224,组数3(g = 3)为例,首先通过数量24,卷积核大小为 3 × 3 3 \times 3 3×3,stride为2的卷积层,输出特征图大小为 112 × 112 112 \times 112 112×112,channel为24;然后通过stride为2的最大池化层,输出特征图大小为 56 × 56 56 \times 56 56×56,channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图©),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为 1 × 1 × 960 1 \times 1 \times 960 1×1×960,再经过全连接层和softmax,得到分类概率。
class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x
模型训练和评估
采用CIFAR-10数据集对ShuffleNet进行预训练。
训练集准备与加载
采用CIFAR-10数据集对ShuffleNet进行预训练。CIFAR-10共有60000张32*32的彩色图像,均匀地分为10个类别,其中50000张图片作为训练集,10000图片作为测试集。如下示例使用mindspore.dataset.Cifar10Dataset
接口下载并加载CIFAR-10的训练集。目前仅支持二进制版本(CIFAR-10 binary version)。
from download import download
import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transformsurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./dataset", kind="tar.gz", replace=True)def get_dataset(train_dataset_path, batch_size, usage):image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]label_trans = transforms.TypeCast(ms.int32)dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')dataset = dataset.batch(batch_size, drop_remainder=True)return datasetdataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
batches_per_epoch = dataset.get_dataset_size()
模型训练
本节用随机初始化的参数做预训练。首先调用ShuffleNetV1
定义网络,参数量选择"2.0x"
,并定义损失函数为交叉熵损失,学习率经过4轮的warmup
后采用余弦退火,优化器采用Momentum
。最后用train.model
中的Model
接口将模型、损失函数、优化器封装在model
中,并用model.train()
对网络进行训练。将ModelCheckpoint
、CheckpointConfig
、TimeMonitor
和LossMonitor
传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。
import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracydef train():mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")net = ShuffleNetV1(model_size="2.0x", n_class=10)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)min_lr = 0.0005base_lr = 0.05lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,batches_per_epoch*250,batches_per_epoch,decay_epoch=250)lr = Tensor(lr_scheduler[-1])optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)callback = [TimeMonitor(), LossMonitor()]save_ckpt_path = "./"config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)callback += [ckpt_callback]print("============== Starting Training ==============")start_time = time.time()# 由于时间原因,epoch = 5,可根据需求进行调整model.train(5, dataset, callbacks=callback)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))print("total time:" + hour + "h " + minute + "m " + second + "s")print("============== Train Success ==============")if __name__ == '__main__':train()
训练好的模型保存在当前目录的shufflenetv1-5_390.ckpt
中,用作评估。
模型评估
在CIFAR-10的测试集上对模型进行评估。
设置好评估模型的路径后加载数据集,并设置Top 1, Top 5的评估标准,最后用model.eval()
接口对模型进行评估。
from mindspore import load_checkpoint, load_param_into_netdef test():mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")net = ShuffleNetV1(model_size="2.0x", n_class=10)param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")load_param_into_net(net, param_dict)net.set_train(False)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}model = Model(net, loss_fn=loss, metrics=eval_metrics)start_time = time.time()res = model.eval(dataset, dataset_sink_mode=False)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)filename = './eval_log.txt'with open(filename, 'a') as file_object:file_object.write(log + '\n')if __name__ == '__main__':test()
输出:
result:{'Loss': 1.5808131725360186, 'Top_1_Acc': 0.5034054487179487, 'Top_5_Acc': 0.9389022435897436}, ckpt:'./shufflenetv1-5_390.ckpt', time: 0h 1m 37s
模型预测
在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。
import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as dsnet = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()
相关文章:

《昇思25天学习打卡营第14天|计算机视觉-ShuffleNet图像分类》
FCN图像语义分割&ResNet50迁移学习&ResNet50图像分类 当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。 ShuffleNet网络介绍 ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端…...
将字符串写入结构体变量中
将字符串写入结构体变量中,主要涉及到结构体中字符数组(或指针)的使用。 一、使用字符数组 假设你有一个结构体,它包含一个字符数组来存储字符串: #include <stdio.h> #include <string.h> // 用于st…...

iPhone 16 Pro系列将标配潜望镜头:已开始生产,支持5倍变焦
ChatGPT狂飙160天,世界已经不是之前的样子。 更多资源欢迎关注 7月6日消息,据DigiTimes最新报道,苹果将在iPhone 16 Pro中引入iPhone 15 Pro Max同款5倍光学变焦四棱镜潜望镜头。 报道称,目前苹果已经将模组订单交至大立光电和玉…...
PG在还没有pg_class的时候怎么访问基础系统表?
在没有pg_class的时候,数据库怎么访问系统表?这个问题可以分成两个阶段来看: 数据库簇初始化,此时一个database都没有,所以怎么构造和访问pg_class等系统表是一个问题私有内存初始化系统表。PG的系统表信息是放在back…...

UnityHub 无法添加模块问题
文章目录 1.问题描述2.问题解决 1.问题描述 在Hub中无法添加模块 2.问题解决 1、点击设置 2、设置版本安装位置 可以发现installs的安装位置路径设置不是unity安装位置,这里我们更改成自己电脑unity安装位置的上一级路径 添加模块正常:...

python04——类(基础new)
类其实也是一种封装的思想,类就是把变量、方法等封装在一起,然后可以通过不同的实例化对其进行调用操作。 1.类的定义 class 类名: 变量a def __init__ (self,参数2,参数2...):初始化函数!!&…...
【Python百日进阶-Web开发-Peewee】Day296 - 查询示例(五)聚合2、递归
文章目录 14.6.13 列出每个指定设施的预订总小时数 List the total hours booked per named facility14.6.14 列出每位会员在 2012 年 9 月 1 日之后的首次预订 List each member’s first booking after September 1st 201214.6.15 生成成员名称列表,每行包含成员总数 Produc…...

闲话银行家舍入法,以及在程序中如何实现
前言 相信对于四舍五入的舍入法,大家都耳熟能详,但对于银行家舍入法,可能就会比较少接触了! 可是在金融界,银行家舍入法可是大名鼎鼎的主角之一,主要应用于金融领域和涉及货币计算的场合。 那么…...
最短路径算法(算法篇)
算法之最短路径算法 最短路径算法 概念: 考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。…...

昇思25天学习打卡营第11天 | LLM原理和实践:基于MindSpore实现BERT对话情绪识别
1. 基于MindSpore实现BERT对话情绪识别 1.1 环境配置 # 实验环境已经预装了mindspore2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号 !pip uninstall mindspore -y !pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore2.2…...

反向散射技术(backscatter communication)
智能反射表面辅助的反向散射通信系统研究综述(知网) 1 反向散射通信技术优势和应用场景 反向散射通信技术通过被动射频技术发送信号,不需要一定配有主动射频单元,被认为是构建绿色节能、低成本、可灵活部署的未来物联网规模化应用关键技术之一,是实现“…...

致远CopyFile文件复制漏洞
复现版本 V8.0SP2 漏洞范围 V5&G6_V6.1至V8.0SP2全系列版本、V5&G6&N_V8.1至V8.1SP2全系列版本。 漏洞复现 上传文件 POST /seeyon/ajax.do?methodajaxAction&managerNameportalCssManager&rnd57507 HTTP/1.1 Accept: */* Content-Type: applicatio…...
MySQL 创建数据库
MySQL 创建数据库 在当今的数据驱动世界中,数据库是任何应用程序的核心组成部分。MySQL,作为一个流行的开源关系数据库管理系统,因其可靠性、易用性和强大的功能而广受欢迎。本文将详细介绍如何在MySQL中创建数据库,包括基础知识和最佳实践。 什么是MySQL数据库? MySQL…...

AbyssFish单连通周期边界多孔结构2D软件
软件介绍 AbyssFish单连通周期边界多孔结构2D软件(以下简称软件)可用于生成具备周期性边界条件的单连通域多孔结构PNG图片,软件可设置生成模型的尺寸、孔隙率、孔隙尺寸、孔喉尺寸等参数,并且具备孔隙形态控制功能。 软件生成的…...

Linux驱动开发-03字符设备驱动框架搭建
一、字符设备驱动开发步骤 驱动模块的加载和卸载(将驱动编译模块,insmod加载驱动运行)字符设备注册与注销(我们的驱动实际上是去操作底层的硬件,所以需要向系统注册一个设备,告诉Linux系统,我有…...

Zynq系列FPGA实现SDI视频编解码+图像缩放+多路视频拼接,基于GTX高速接口,提供8套工程源码和技术支持
目录 1、前言工程概述免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本博已有的FPGA图像缩放方案本方案的无缩放应用本方案在Xilinx--Kintex系列FPGA上的应用 3、详细设计方案设计原理框图SDI 输入设备Gv8601a 均衡器GTX 解串与串化SMPTE SD/HD/3G SDI IP核BT1120转RGB自研…...

VS2019使用C#写窗体程序技巧(1)
1、打开串口 private void button1_Click(object sender, EventArgs e){myPort cmb1.Text;mybaud Convert.ToInt32(cmb2.Text, 10);databit 8;parity Parity.None;stopBit StopBits.One;textBox9.Text "2";try{sp new SerialPort(myPort, mybaud, parity, dat…...
Python爬虫-requests模块
前戏: 1.你是否在夜深人静的时候,想看一些会让你更睡不着的图片却苦于没有资源... 2.你是否在节假日出行高峰的时候,想快速抢购火车票成功..。 3.你是否在网上购物的时候,想快速且精准的定位到口碑质量最好的商品. …...
适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南
将下面内容保存为install.bash,直接用bash执行一把梭解决 #!/bin/bash### steps #### # verify the system has a cuda-capable gpu # download and install the nvidia cuda toolkit and cudnn # setup environmental variables # verify the installation ######…...
使用conda安装openturns
目录 1. 有效方法2. 整体分析使用pip安装使用conda安装验证安装安装过程中可能遇到的问题 1. 有效方法 conda install -c conda-forge openturns2. 整体分析 OpenTURNS是一个用于概率和统计分析的软件库,主要用于不确定性量化。你可以通过以下步骤在Python环境中安…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...