当前位置: 首页 > news >正文

AbyssFish单连通周期边界多孔结构2D软件

软件介绍

AbyssFish单连通周期边界多孔结构2D软件(以下简称软件)可用于生成具备周期性边界条件的单连通域多孔结构PNG图片,软件可设置生成模型的尺寸、孔隙率、孔隙尺寸、孔喉尺寸等参数,并且具备孔隙形态控制功能。
在这里插入图片描述

软件生成的图片可用于科研绘图,或进行处理后导入ANSYS、ABAQUS、COMSOL等有限元软件进行模拟仿真。
在这里插入图片描述

模型说明

软件生成的模型以黑色部分作为孔隙,白色部分作为孔隙间的夹杂颗粒,如您的模型与软件默认设置不一致,也可根据需求对模型进行后续处理,以下均以软件默认设置做介绍。
在这里插入图片描述

软件生成的模型黑色孔隙部分具备单连通性,可确保在生成有限元模型时形成一个整体部件。模型具备周期性边界条件(PBC),可用于代表性体积单元(RVE)的研究。
在这里插入图片描述

软件可控制孔隙部分的比例,即孔隙率,软件绘图完成后会提示实际生成的孔隙率,如若实际生成的孔隙率与设定值不符,可通过增大迭代次数等方式来达到设定值。
在这里插入图片描述

孔喉半径指模型中可能存在的最小的孔喉半径,孔喉(pore throat)是指岩体或者土体中孔隙之间相互连接比较狭窄的通道。以下为不同孔喉半径参数下的模型样图。
在这里插入图片描述

边界平滑参数可控制孔隙的形态,下面为不同边界平滑参数的模型样图。
在这里插入图片描述

迭代次数参数的设定是为了确保模型在有限时间内可生成,当实际生成的模型孔隙率与设定值不符时,适当增加迭代次数会使得实际孔隙率趋向于设定值,但迭代次数的增加会导致模型生成时间增长。

颗粒尺寸参数可控制孔隙间白色颗粒的尺寸,需要注意,颗粒尺寸增加后应适当加大颗粒的最小直径及遍历步数参数,否则可能导致实际生成的颗粒尺寸达不到设定值。以下为不同颗粒尺寸下的模型样图。
在这里插入图片描述

最小直径及遍历步数参数可对颗粒的形态进行控制,可根据建模的需要进行适当调整,但最小直径及遍历步数不宜设置过小,过小可能导致模型无法生成。
在这里插入图片描述

说明提醒

软件适用于Windows系统,支持Windows 7、8、10、11。

软件下载

https://www.jishulink.com/post/1946991

相关文章:

AbyssFish单连通周期边界多孔结构2D软件

软件介绍 AbyssFish单连通周期边界多孔结构2D软件(以下简称软件)可用于生成具备周期性边界条件的单连通域多孔结构PNG图片,软件可设置生成模型的尺寸、孔隙率、孔隙尺寸、孔喉尺寸等参数,并且具备孔隙形态控制功能。 软件生成的…...

Linux驱动开发-03字符设备驱动框架搭建

一、字符设备驱动开发步骤 驱动模块的加载和卸载(将驱动编译模块,insmod加载驱动运行)字符设备注册与注销(我们的驱动实际上是去操作底层的硬件,所以需要向系统注册一个设备,告诉Linux系统,我有…...

Zynq系列FPGA实现SDI视频编解码+图像缩放+多路视频拼接,基于GTX高速接口,提供8套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本博已有的FPGA图像缩放方案本方案的无缩放应用本方案在Xilinx--Kintex系列FPGA上的应用 3、详细设计方案设计原理框图SDI 输入设备Gv8601a 均衡器GTX 解串与串化SMPTE SD/HD/3G SDI IP核BT1120转RGB自研…...

VS2019使用C#写窗体程序技巧(1)

1、打开串口 private void button1_Click(object sender, EventArgs e){myPort cmb1.Text;mybaud Convert.ToInt32(cmb2.Text, 10);databit 8;parity Parity.None;stopBit StopBits.One;textBox9.Text "2";try{sp new SerialPort(myPort, mybaud, parity, dat…...

Python爬虫-requests模块

前戏: 1.你是否在夜深人静的时候,想看一些会让你更睡不着的图片却苦于没有资源... 2.你是否在节假日出行高峰的时候,想快速抢购火车票成功..。 3.你是否在网上购物的时候,想快速且精准的定位到口碑质量最好的商品. …...

适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南

将下面内容保存为install.bash,直接用bash执行一把梭解决 #!/bin/bash### steps #### # verify the system has a cuda-capable gpu # download and install the nvidia cuda toolkit and cudnn # setup environmental variables # verify the installation ######…...

使用conda安装openturns

目录 1. 有效方法2. 整体分析使用pip安装使用conda安装验证安装安装过程中可能遇到的问题 1. 有效方法 conda install -c conda-forge openturns2. 整体分析 OpenTURNS是一个用于概率和统计分析的软件库,主要用于不确定性量化。你可以通过以下步骤在Python环境中安…...

Chameleon:动态UI框架使用详解

文章目录 引言Chameleon框架原理核心概念工作流程 基础使用安装与配置创建基础界面 高级使用自定义组件响应式布局数据流与状态管理 结论 引言 Chameleon,作为一种动态UI框架,旨在通过灵活、高效的方式帮助开发者构建跨平台、响应用户交互的图形用户界面…...

7.10飞书一面面经

问题描述 Redis为什么快? 这个问题我遇到过,但是没有好好总结,导致答得很乱。 答:Redis基于内存操作: 传统的磁盘文件操作相比减少了IO,提高了操作的速度。 Redis高效的数据结构:Redis专门设计…...

[数据结构] 归并排序快速排序 及非递归实现

()标题:[数据结构] 归并排序&&快速排序 及非递归实现 水墨不写bug (图片来源于网络) 目录 (一)快速排序 类比递归谋划非递归 快速排序的非递归实现: (二)归并排序 归…...

面试题 12. 矩阵中的路径

矩阵中的路径 题目描述示例 题解 题目描述 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成&#xff0…...

钉钉扫码登录第三方

钉钉文档 实现登录第三方网站 - 钉钉开放平台 (dingtalk.com) html页面 将html放在 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>登录</title>// jquery<script src"http://code.jqu…...

多GPU系统中的CUDA设备不可用问题

我们在使用多GPU系统时遇到了CUDA设备不可用的问题&#xff0c;详细情况如下&#xff1a; 问题描述&#xff1a; 我们在一台配备有8块NVIDIA GeForce RTX 3090显卡的服务器上运行CUDA程序时&#xff0c;遇到了如下错误&#xff1a; cudaErrorDevicesUnavailable: CUDA-capabl…...

python的列表推导式

文章目录 前言一、解释列表推导式二、在这句代码中的应用三、示例四、使用 for 循环的等价代码总结 前言 看看这一行代码&#xff1a;questions [q.strip() for q in examples["question"]] &#xff0c;问题是最外层的 中括号是做什么的&#xff1f; 最外层的中括…...

类与对象(2)

我们在了解了类的简单创建后&#xff0c;需要对类的创建与销毁有进一步的了解&#xff0c;也就是对于类的构造函数与析构函数的了解。 目录 注意&#xff1a; 构造函数的特性&#xff1a; 析构函数&#xff1a; 注意&#xff1a; 该部分内容为重难点内容&#xff0c;在正常…...

迂回战术:“另类“全新安装 macOS 15 Sequoia beta2 的极简方法

概述 随着 WWDC 24 的胜利闭幕&#xff0c;Apple 平台上各种 beta 版的系统也都“跃跃欲出”&#xff0c;在 mac 上自然也不例外。 本次全新的 macOS 15 Sequoia&#xff08;红杉&#xff09;包含了诸多重磅升级&#xff0c;作为秃头开发者的我们怎么能不先睹为快呢&#xff1…...

如何设计一个秒杀系统,(高并发高可用分布式集群)

设计一个高并发、高可用的分布式秒杀系统是一个非常具有挑战性的任务&#xff0c;需要从架构、数据库、缓存、并发控制、降级限流等多个维度进行考虑。以下是一个典型的秒杀系统设计思路&#xff1a; 1. 系统架构 微服务架构 拆分服务&#xff1a;将系统功能拆分为多个微服务…...

深度优先搜索(所有可达路径)

参考题目&#xff1a;所有可达路径 题目描述 给定一个有 n 个节点的有向无环图&#xff0c;节点编号从 1 到 n。请编写一个函数&#xff0c;找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。 输入描述 第一行包含两个整数 N&#xff0c;M&…...

如何配置yolov10环境?

本文介绍如何快速搭建起yolov10环境&#xff0c;用于后续项目推理、模型训练。教程适用win、linux系统 yolo10是基于yolo8&#xff08;ultralytics&#xff09;的改进&#xff0c;环境配置跟yolo8几乎一模一样。 目录 第1章节&#xff1a;创建虚拟环境 第2章节&#xff1a;…...

『大模型笔记』GraphRAG:利用复杂信息进行发现的新方法!

GraphRAG:利用复杂信息进行发现的新方法! 文章目录 一. GraphRAG:利用复杂信息进行发现的新方法!1. 将RAG应用于私人数据集2. 整个数据集的推理3. 创建LLM生成的知识图谱4. 结果指标5. 下一步二. 参考文献微软官方推文:https://www.microsoft.com/en-us/research/blog/gra…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...