当前位置: 首页 > news >正文

【Python百日进阶-Web开发-Peewee】Day296 - 查询示例(五)聚合2、递归

文章目录

      • 14.6.13 列出每个指定设施的预订总小时数 List the total hours booked per named facility
      • 14.6.14 列出每位会员在 2012 年 9 月 1 日之后的首次预订 List each member’s first booking after September 1st 2012
      • 14.6.15 生成成员名称列表,每行包含成员总数 Produce a list of member names, with each row containing the total member count
      • 14.6.16 生成成员编号列表 Produce a numbered list of members
      • 14.6.17 再次输出预订数量最多的设施 ID, Output the facility id that has the highest number of slots booked, again
      • 14.6.18 按使用的(四舍五入)小时数对成员进行排名 Rank members by (rounded) hours used
      • 14.6.19 查找前三大创收设施 Find the top three revenue generating facilities
      • 14.6.20 按价值分类设施 Classify facilities by value
    • 14.7 递归 Recursion
      • 14.7.1 查找成员 ID 27 的向上推荐链 Find the upward recommendation chain for member ID 27

14.6.13 列出每个指定设施的预订总小时数 List the total hours booked per named facility

列出每个设施预订的总小时数,记住一个时段持续半小时。输出表应包含设施 ID、名称和预订时间,按设施 ID 排序。

SELECT f.facid, f.name, SUM(b.slots) * .5
FROM facilities AS f
INNER JOIN bookings AS b ON

相关文章:

【Python百日进阶-Web开发-Peewee】Day296 - 查询示例(五)聚合2、递归

文章目录 14.6.13 列出每个指定设施的预订总小时数 List the total hours booked per named facility14.6.14 列出每位会员在 2012 年 9 月 1 日之后的首次预订 List each member’s first booking after September 1st 201214.6.15 生成成员名称列表,每行包含成员总数 Produc…...

闲话银行家舍入法,以及在程序中如何实现

前言 相信对于四舍五入的舍入法,大家都耳熟能详,但对于银行家舍入法,可能就会比较少接触了! 可是在金融界,银行家舍入法可是大名鼎鼎的主角之一,主要应用于金融领域和涉及货币计算的场合。 那么&#xf…...

最短路径算法(算法篇)

算法之最短路径算法 最短路径算法 概念: 考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。…...

昇思25天学习打卡营第11天 | LLM原理和实践:基于MindSpore实现BERT对话情绪识别

1. 基于MindSpore实现BERT对话情绪识别 1.1 环境配置 # 实验环境已经预装了mindspore2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号 !pip uninstall mindspore -y !pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore2.2…...

反向散射技术(backscatter communication)

智能反射表面辅助的反向散射通信系统研究综述(知网) 1 反向散射通信技术优势和应用场景 反向散射通信技术通过被动射频技术发送信号,不需要一定配有主动射频单元,被认为是构建绿色节能、低成本、可灵活部署的未来物联网规模化应用关键技术之一,是实现“…...

致远CopyFile文件复制漏洞

复现版本 V8.0SP2 漏洞范围 V5&G6_V6.1至V8.0SP2全系列版本、V5&G6&N_V8.1至V8.1SP2全系列版本。 漏洞复现 上传文件 POST /seeyon/ajax.do?methodajaxAction&managerNameportalCssManager&rnd57507 HTTP/1.1 Accept: */* Content-Type: applicatio…...

MySQL 创建数据库

MySQL 创建数据库 在当今的数据驱动世界中,数据库是任何应用程序的核心组成部分。MySQL,作为一个流行的开源关系数据库管理系统,因其可靠性、易用性和强大的功能而广受欢迎。本文将详细介绍如何在MySQL中创建数据库,包括基础知识和最佳实践。 什么是MySQL数据库? MySQL…...

AbyssFish单连通周期边界多孔结构2D软件

软件介绍 AbyssFish单连通周期边界多孔结构2D软件(以下简称软件)可用于生成具备周期性边界条件的单连通域多孔结构PNG图片,软件可设置生成模型的尺寸、孔隙率、孔隙尺寸、孔喉尺寸等参数,并且具备孔隙形态控制功能。 软件生成的…...

Linux驱动开发-03字符设备驱动框架搭建

一、字符设备驱动开发步骤 驱动模块的加载和卸载(将驱动编译模块,insmod加载驱动运行)字符设备注册与注销(我们的驱动实际上是去操作底层的硬件,所以需要向系统注册一个设备,告诉Linux系统,我有…...

Zynq系列FPGA实现SDI视频编解码+图像缩放+多路视频拼接,基于GTX高速接口,提供8套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本博已有的FPGA图像缩放方案本方案的无缩放应用本方案在Xilinx--Kintex系列FPGA上的应用 3、详细设计方案设计原理框图SDI 输入设备Gv8601a 均衡器GTX 解串与串化SMPTE SD/HD/3G SDI IP核BT1120转RGB自研…...

VS2019使用C#写窗体程序技巧(1)

1、打开串口 private void button1_Click(object sender, EventArgs e){myPort cmb1.Text;mybaud Convert.ToInt32(cmb2.Text, 10);databit 8;parity Parity.None;stopBit StopBits.One;textBox9.Text "2";try{sp new SerialPort(myPort, mybaud, parity, dat…...

Python爬虫-requests模块

前戏: 1.你是否在夜深人静的时候,想看一些会让你更睡不着的图片却苦于没有资源... 2.你是否在节假日出行高峰的时候,想快速抢购火车票成功..。 3.你是否在网上购物的时候,想快速且精准的定位到口碑质量最好的商品. …...

适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南

将下面内容保存为install.bash,直接用bash执行一把梭解决 #!/bin/bash### steps #### # verify the system has a cuda-capable gpu # download and install the nvidia cuda toolkit and cudnn # setup environmental variables # verify the installation ######…...

使用conda安装openturns

目录 1. 有效方法2. 整体分析使用pip安装使用conda安装验证安装安装过程中可能遇到的问题 1. 有效方法 conda install -c conda-forge openturns2. 整体分析 OpenTURNS是一个用于概率和统计分析的软件库,主要用于不确定性量化。你可以通过以下步骤在Python环境中安…...

Chameleon:动态UI框架使用详解

文章目录 引言Chameleon框架原理核心概念工作流程 基础使用安装与配置创建基础界面 高级使用自定义组件响应式布局数据流与状态管理 结论 引言 Chameleon,作为一种动态UI框架,旨在通过灵活、高效的方式帮助开发者构建跨平台、响应用户交互的图形用户界面…...

7.10飞书一面面经

问题描述 Redis为什么快? 这个问题我遇到过,但是没有好好总结,导致答得很乱。 答:Redis基于内存操作: 传统的磁盘文件操作相比减少了IO,提高了操作的速度。 Redis高效的数据结构:Redis专门设计…...

[数据结构] 归并排序快速排序 及非递归实现

()标题:[数据结构] 归并排序&&快速排序 及非递归实现 水墨不写bug (图片来源于网络) 目录 (一)快速排序 类比递归谋划非递归 快速排序的非递归实现: (二)归并排序 归…...

面试题 12. 矩阵中的路径

矩阵中的路径 题目描述示例 题解 题目描述 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成&#xff0…...

钉钉扫码登录第三方

钉钉文档 实现登录第三方网站 - 钉钉开放平台 (dingtalk.com) html页面 将html放在 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>登录</title>// jquery<script src"http://code.jqu…...

多GPU系统中的CUDA设备不可用问题

我们在使用多GPU系统时遇到了CUDA设备不可用的问题&#xff0c;详细情况如下&#xff1a; 问题描述&#xff1a; 我们在一台配备有8块NVIDIA GeForce RTX 3090显卡的服务器上运行CUDA程序时&#xff0c;遇到了如下错误&#xff1a; cudaErrorDevicesUnavailable: CUDA-capabl…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...