当前位置: 首页 > news >正文

火柴棒图python绘画

使用Python绘制二项分布的概率质量函数(PMF)

在这篇博客中,我们将探讨如何使用Python中的scipy库和matplotlib库来绘制二项分布的概率质量函数(PMF)。二项分布是统计学中常见的离散概率分布,描述了在固定次数的独立试验中,成功次数的分布情况。
在这里插入图片描述

代码示例

以下是一个完整的代码示例,展示了如何绘制二项分布的PMF:

from scipy.stats import binom
import pylab as plt# 定义二项分布的参数
n = 6  # 试验次数
p = 0.3  # 成功概率# 生成可能的成功次数
x = plt.arange(7)  # 0到6的整数
y = binom.pmf(x, n, p)  # 计算每个成功次数的概率# 创建第一个子图:竖线图
plt.subplot(121)
plt.plot(x, y, 'ro')  # 绘制红色圆点
plt.vlines(x, 0, y, 'k', lw=2, alpha=0.5)  # 绘制竖线
plt.xlabel('成功次数')
plt.ylabel('概率')
plt.title('竖线图')# 创建第二个子图:茎叶图
plt.subplot(122)
plt.stem(x, y, use_line_collection=True)  # 绘制茎叶图
plt.xlabel('成功次数')
plt.ylabel('概率')
plt.title('茎叶图')# 保存图像并显示
plt.savefig("figure9_2.png", dpi=500)
plt.show()
代码解释
  1. 导入库

    from scipy.stats import binom
    import pylab as plt
    

    我们导入了scipy.stats中的binom模块来处理二项分布,并导入pylab作为绘图工具。

  2. 定义参数

    n = 6  # 试验次数
    p = 0.3  # 成功概率
    

    这里我们定义了二项分布的参数:试验次数n和成功概率p

  3. 生成数据

    x = plt.arange(7)  # 0到6的整数
    y = binom.pmf(x, n, p)  # 计算每个成功次数的概率
    

    我们生成了可能的成功次数x(从0到6),并计算了每个成功次数的概率y

  4. 绘制竖线图

    plt.subplot(121)
    plt.plot(x, y, 'ro')  # 绘制红色圆点
    plt.vlines(x, 0, y, 'k', lw=2, alpha=0.5)  # 绘制竖线
    plt.xlabel('成功次数')
    plt.ylabel('概率')
    plt.title('竖线图')
    

    在第一个子图中,我们绘制了竖线图,使用红色圆点表示每个成功次数的概率,并用黑色竖线从x轴延伸到每个点。

  5. 绘制茎叶图

    plt.subplot(122)
    plt.stem(x, y, use_line_collection=True)  # 绘制茎叶图
    plt.xlabel('成功次数')
    plt.ylabel('概率')
    plt.title('茎叶图')
    

    在第二个子图中,我们绘制了茎叶图,使用竖线和圆点来表示每个成功次数的概率。

  6. 保存并显示图像

    plt.savefig("figure9_2.png", dpi=500)
    plt.show()
    

    最后,我们将图像保存为高分辨率的PNG文件,并显示图像。

总结

通过这篇博客,我们学习了如何使用Python绘制二项分布的概率质量函数(PMF)。我们使用了scipy库来计算二项分布的概率,并使用matplotlib库绘制了竖线图和茎叶图。这些图表可以帮助我们更好地理解二项分布的特性和行为。

希望这篇博客对你有所帮助!如果你有任何问题或建议,欢迎在评论区留言。谢谢阅读!

相关文章:

火柴棒图python绘画

使用Python绘制二项分布的概率质量函数(PMF) 在这篇博客中,我们将探讨如何使用Python中的scipy库和matplotlib库来绘制二项分布的概率质量函数(PMF)。二项分布是统计学中常见的离散概率分布,描述了在固定次…...

Nginx七层(应用层)反向代理:UWSGI代理uwsgi_pass篇

Nginx七层(应用层)反向代理 UWSGI代理uwsgi_pass篇 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this a…...

Effective C++笔记之二十一:One Definition Rule(ODR)

ODR细节有点复杂,跨越各种情况。基本内容如下: ●普通(非模板)的noninline函数和成员函数、noninline全局变量、静态数据成员在整个程序中都应当只定义一次。 ●class类型(包括structs和unions)、模板&…...

探索未来:Transformer模型在智能环境监测的革命性应用

探索未来:Transformer模型在智能环境监测的革命性应用 在当今数字化时代,环境监测正逐渐从传统的人工检测方式转变为智能化、自动化的系统。Transformer模型,作为深度学习领域的一颗新星,其在自然语言处理(NLP&#x…...

Nginx中文URL请求404

这两天正在搞我的静态网站。方案是:从思源笔记Markdown笔记,用MkOcs build成静态网站,上传到到Nginx服务器。遇到一个问题:URL含有中文会404,全英文URL则正常访问。 ‍ 比如: ​​ ‍ 设置了utf-8 ht…...

33. 动量法(Momentum)介绍

1. 背景知识 在深度学习的优化过程中,梯度下降法(Gradient Descent, GD)是最基本的方法。然而,基本的梯度下降法在实际应用中存在收敛速度慢、容易陷入局部最小值以及在高维空间中振荡较大的问题。为了解决这些问题,人…...

Python | Leetcode Python题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; class Solution:def summaryRanges(self, nums: List[int]) -> List[str]:def f(i: int, j: int) -> str:return str(nums[i]) if i j else f{nums[i]}->{nums[j]}i 0n len(nums)ans []while i < n:j iwhile j 1 < n …...

物联网应用,了解一点 WWAN全球网络标准

WWAN/蜂窝无线电认证&#xff0c;对跨地区应用场景&#xff0c;特别重要。跟随全球业务的脚步&#xff0c;我们像大唐先辈一样走遍全球业务的时候&#xff0c;了解一点全球化的 知识信息&#xff0c;就显得有那么点意义。 NA &#xff08;北美&#xff09;&#xff1a;美国和加…...

如何指定多块GPU卡进行训练-数据并行

训练代码&#xff1a; train.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset import torch.nn.functional as F# 假设我们有一个简单的文本数据集 class TextDataset(Dataset):def __init__(self, te…...

RK3568笔记三十三: helloworld 驱动测试

若该文为原创文章&#xff0c;转载请注明原文出处。 报着学习态度&#xff0c;接下来学习驱动是如何使用的&#xff0c;从简单的helloworld驱动学习起。 开始编写第一个驱动程序—helloworld 驱动。 一、环境 1、开发板&#xff1a;正点原子的ATK-DLRK3568 2、系统&#xf…...

【智能制造-14】机器视觉软件

CCD相机和COMS相机? CCD&#xff08;Charge-Coupled Device&#xff09;相机和CMOS&#xff08;Complementary Metal-Oxide-Semiconductor&#xff09;相机是两种常见的数字图像传感器技术&#xff0c;用于捕捉和处理图像。 CCD相机&#xff1a; CCD相机使用一种称为CCD的光电…...

MVC分页

public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数&#xff0c;这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…...

webGL可用的14种3D文件格式,但要具体问题具体分析。

hello&#xff0c;我威斯数据&#xff0c;你在网上看到的各种炫酷的3d交互效果&#xff0c;背后都必须有三维文件支撑&#xff0c;就好比你网页的时候&#xff0c;得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库&#xff0c;可以在网页上实现硬件加速的3D图…...

HybridCLR原理中的重点总结

序言 该文章以一个新手的身份&#xff0c;讲一下自己学习的经过&#xff0c;大家更快的学习HrbirdCLR。 我之前的两个Unity项目中&#xff0c;都使用到了热更新功能&#xff0c;而热更新的技术栈都是用的HybridCLR。 第一个项目本身虽然已经集成好了热更逻辑&#xff08;使用…...

昇思学习打卡-14-ResNet50迁移学习

文章目录 数据集可视化预训练模型的使用部分实现 推理 迁移学习&#xff1a;在一个很大的数据集上训练得到一个预训练模型&#xff0c;然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章学习使用的是前面学过的ResNet50&#xff0c;使用迁移学…...

软件开发面试题C#,.NET知识点(续)

1.C#中的封装是什么&#xff0c;以及它的重要性。 封装&#xff08;Encapsulation&#xff09; 是面向对象编程&#xff08;OOP&#xff09;的一个基本概念。它指的是将对象的状态&#xff08;属性&#xff09;和行为&#xff08;方法&#xff09;绑定在一起&#xff0c;并且将…...

2019年美赛题目Problem A: Game of Ecology

本题分析&#xff1a; 本题想要要求从实际生物角度出发&#xff0c;对权力游戏中龙这种虚拟生物的生态环境和生物特性进行建模&#xff0c;感觉属于比较开放类型的题目&#xff0c;重点在于参考生物的选择&#xff0c;龙虽然是虚拟的但是龙的生态特性可以参考目前生物圈里存在…...

沙龙回顾|MongoDB如何充当企业开发加速器?

数据不仅是企业发展转型的驱动力&#xff0c;也是开发者最棘手的问题。前日&#xff0c;MongoDB携手阿里云、NineData在杭州成功举办了“数据驱动&#xff0c;敏捷前行——MongoDB企业开发加速器”技术沙龙。此次活动吸引了来自各行各业的专业人员&#xff0c;共同探讨MongoDB的…...

云端编码:将您的技术API文档安全存储在iCloud的最佳实践

云端编码&#xff1a;将您的技术API文档安全存储在iCloud的最佳实践 作为一名技术专业人士&#xff0c;管理不断增长的API文档库是一项挑战。iCloud提供了一个无缝的解决方案&#xff0c;允许您在所有设备上存储、同步和访问您的个人技术API文档。本文将指导您如何在iCloud中高…...

在Spring Boot项目中集成单点登录解决方案

在Spring Boot项目中集成单点登录解决方案 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在现代的企业应用中&#xff0c;单点登录&#xff08;Single Sign-On, SSO&#xff09;解决方案是确保用户…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...