昇思学习打卡-14-ResNet50迁移学习
文章目录
- 数据集可视化
- 预训练模型的使用
- 部分实现
- 推理
- 迁移学习:在一个很大的数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。
- 本章学习使用的是前面学过的ResNet50,使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。
数据集可视化

预训练模型的使用
- 搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型,并将权重参数加载到网络中。
- 使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置
requires_grad == False冻结参数,以便不在反向传播中计算梯度。
部分实现
import matplotlib.pyplot as plt
import os
import time
# 修改参数1pretrained=True
net_work = resnet50(pretrained=True)# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():if param.name not in ["fc.weight", "fc.bias"]:# 修改参数2param.requires_grad = False# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')def forward_fn(inputs, targets):logits = net_work(inputs)loss = loss_fn(logits, targets)return lossgrad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)def train_step(inputs, targets):loss, grads = grad_fn(inputs, targets)opt(grads)return loss# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})
推理

此章节学习到此结束,感谢昇思平台。
相关文章:
昇思学习打卡-14-ResNet50迁移学习
文章目录 数据集可视化预训练模型的使用部分实现 推理 迁移学习:在一个很大的数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章学习使用的是前面学过的ResNet50,使用迁移学…...
软件开发面试题C#,.NET知识点(续)
1.C#中的封装是什么,以及它的重要性。 封装(Encapsulation) 是面向对象编程(OOP)的一个基本概念。它指的是将对象的状态(属性)和行为(方法)绑定在一起,并且将…...
2019年美赛题目Problem A: Game of Ecology
本题分析: 本题想要要求从实际生物角度出发,对权力游戏中龙这种虚拟生物的生态环境和生物特性进行建模,感觉属于比较开放类型的题目,重点在于参考生物的选择,龙虽然是虚拟的但是龙的生态特性可以参考目前生物圈里存在…...
沙龙回顾|MongoDB如何充当企业开发加速器?
数据不仅是企业发展转型的驱动力,也是开发者最棘手的问题。前日,MongoDB携手阿里云、NineData在杭州成功举办了“数据驱动,敏捷前行——MongoDB企业开发加速器”技术沙龙。此次活动吸引了来自各行各业的专业人员,共同探讨MongoDB的…...
云端编码:将您的技术API文档安全存储在iCloud的最佳实践
云端编码:将您的技术API文档安全存储在iCloud的最佳实践 作为一名技术专业人士,管理不断增长的API文档库是一项挑战。iCloud提供了一个无缝的解决方案,允许您在所有设备上存储、同步和访问您的个人技术API文档。本文将指导您如何在iCloud中高…...
在Spring Boot项目中集成单点登录解决方案
在Spring Boot项目中集成单点登录解决方案 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在现代的企业应用中,单点登录(Single Sign-On, SSO)解决方案是确保用户…...
Java-常用API
1-Java API : 指的就是 JDK 中提供的各种功能的 Java类。 2-Scanner基本使用 Scanner: 一个简单的文本扫描程序,可以获取基本类型数据和字符串数据 构造方法: Scanner(InputStream source):创建 Scanner 对象 Sy…...
Python从Excel表中查找指定数据填入新表
#读取xls文件中的数据 import xlrd file "原表.xls" wb xlrd.open_workbook(file) #读取工作簿 ws wb.sheets()[0] #选第一个工作表 data [] for row in range(7, ws.nrows): name ws.cell(row, 1).value.strip() #科室名称 total1 ws.cell(row, 2…...
从零开始实现大语言模型(三):Token Embedding与位置编码
1. 前言 Embedding是深度学习领域一种常用的类别特征数值化方法。在自然语言处理领域,Embedding用于将对自然语言文本做tokenization后得到的tokens映射成实数域上的向量。 本文介绍Embedding的基本原理,将训练大语言模型文本数据对应的tokens转换成Em…...
视频怎么压缩变小?最佳视频压缩器
即使在云存储和廉价硬盘空间时代,大视频文件使用起来仍然不方便。无论是存储、发送到电子邮件帐户还是刻录到 DVD,拥有最好的免费压缩软件可以确保您快速缩小文件大小,而不必担心视频质量下降。继续阅读以探索一些顶级最佳 免费视频压缩器选项…...
LLM - 绝对与相对位置编码 与 RoPE 旋转位置编码 源码
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/140281680 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Transformer 是基于 MHSA (多头自注意力),然而,MHSA 对于位置是不敏感…...
B3917 [语言月赛 202401] 小跳蛙
OK 挠~ stop here~ 好啊,现在呢,把手头的事情先放一放啊,我们来做道练习 OK? 好啊来: 小跳蛙 题目描述 有 𝑛−1 只小跳蛙在池塘中,依次被编号为 1,2,⋯ ,𝑛−1。池塘里有 &am…...
Bash ——shell
Bash作为用户与操作系统之间的接口,让用户通过命令行输入各种指令来控制和操作计算机系统。 shell的两种解释: 1.linux命令解释器 Terminal 终端 ——》shell命令 ——》 Linux kernel (内核) Linux内核的作用: 1.…...
PyTorch复现PointNet——模型训练+可视化测试显示
因为项目涉及到3D点云项目,故学习下PointNet这个用来处理点云的神经网络 论文的话,大致都看了下,网络结构有了一定的了解,本博文主要为了下载调试PointNet网络源码,训练和测试调通而已。 我是在Anaconda下创建一个新的…...
分享五款软件,成为高效生活的好助手
给大家分享一些优秀的软件工具,是一件让人很愉悦的事情,今天继续带来5款优质软件。 1.图片放大——Bigjpg Bigjpg是一款图片放大软件,采用先进的AI算法,能够在不损失图片质量的前提下,将低分辨率图片放大至所需尺寸。无论…...
代码随想录算法训练营DAY58|101.孤岛的总面积、102.沉没孤岛、103. 水流问题、104.建造最大岛屿
忙。。。写了好久。。。。慢慢补吧。 101.孤岛的总面积 先把周边的岛屿变成水dfs def dfs(x, y, graph, s):if x<0 or x>len(graph) or y<0 or y>len(graph[0]) or graph[x][y]0:return sgraph[x][y]0s1s dfs(x1, y, graph, s)s dfs(x-1, y, graph, s)s dfs(…...
韦尔股份:深蹲起跳?
利润大增7倍,是反转信号还是回光返照? 今天我们聊聊光学半导体龙头——韦尔股份。 上周末,韦尔股份发布半年业绩预告,预计上半年净利润13至14亿,同比增幅高达 754%至 819%。 然而,回首 2023 年它的净利仅 …...
docs | 使用 sphinx 转化rst文件为html文档
1. 效果图 book 风格。 优点: 极简风格右边有标题导航左侧是文件导航,可隐藏 2. 使用方式 reST 格式,比markdown格式更复杂。 推荐使用 book 风格。 文档构建工具是 sphinx,是一个python包。 $ pip3 list | grep -i Sphinx …...
【ChatGPT 消费者偏好】第二弹:ChatGPT在日常生活中的使用—推文分享—2024-07-10
今天的推文主题还是【ChatGPT & 消费者偏好】 第一篇:哪些动机因素和技术特征的组合能够导致ChatGPT用户中高和低的持续使用意图。第二篇:用户对ChatGPT的互动性、性能期望、努力期望以及社会影响如何影响他们继续使用这些大型语言模型的意向&#x…...
Webpack配置及工作流程
Webpack是一个现代JavaScript应用程序的静态模块打包器(module bundler)。当Webpack处理应用程序时,它会在内部构建一个依赖图(dependency graph),该图会映射项目所需的每个模块,并生成一个或多…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
