当前位置: 首页 > news >正文

PyTorch复现PointNet——模型训练+可视化测试显示

因为项目涉及到3D点云项目,故学习下PointNet这个用来处理点云的神经网络
论文的话,大致都看了下,网络结构有了一定的了解,本博文主要为了下载调试PointNet网络源码,训练和测试调通而已。

我是在Anaconda下创建一个新的虚拟环境空间部署项目测试
大概用到的就这些了,后面调试项目时候缺少安装啥就行了

torch                     2.0.0+cu117
torchvision               0.15.0+cu117
python                    3.8.19
numpy                     1.24.3
matplotlib                3.7.5
opencv-python             4.10.0.84

一、下载源码和数据集

论文:《PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation》
GitHub源码:pointnet.pytorch
数据集下载:shapenetcore_partanno_segmentation_benchmark_v0.zip

大致的源码结构如下:
在这里插入图片描述

二、PyCharm打开项目

拿到项目,第一件事是要看下README.md
在这里插入图片描述
没啥高级词汇,大概能看出来啥意思就行

三、下载数据集

.sh文件是Linux下的脚本文件夹,我这是Windows操作系统,先打开看看这里面都写了啥
可视化工具在build.sh文件中,数据集在download.sh中,我这边就只用到必须的数据集

看下download.sh
在这里插入图片描述
知道了数据集下载的链接
数据集下载:https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip
也就是第一部分中提到的数据集下载链接

四、分类任务

训练的话,通过README.md可以看出有两种,一种是分类任务,一种是分割任务

cd utils
python train_classification.py --dataset <dataset path> --nepoch=<number epochs> --dataset_type <modelnet40 | shapenet>

4.1 分类模型训练:train_classification.py

1,文件在utils文件夹下

在这里插入图片描述

2,README.md也说明了要配置的参数

python train_classification.py --dataset <dataset path> --nepoch=<number epochs> --dataset_type <modelnet40 | shapenet>

我把要配置的参数给整理到一块了,方便进行修改测试,其他的参数根据情况去修改即可
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
修改进程数为0,parser.add_argument('--workers', type=int, help='number of data loading workers', default=0)
在这里插入图片描述

4,再次右击运行(Ctrl + Shift + F10)报错

OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

在这里插入图片描述
按要求加入,os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" ,允许程序在存在多个 libiomp5md.dll 副本的情况下继续执行,但这可能会导致不稳定的行为,包括程序崩溃或产生不正确的结果,所以它只是一个临时的解决方案

import os                                  
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"  

在这里插入图片描述

5,再次右击运行(Ctrl + Shift + F10),开始训练

在这里插入图片描述
让它跑着吧先~~也就5个epoch

6,因为这里训练的epoch为5,每个epoch都会存下来一个模型

可以看到在utils下的cls文件下有五个模型
在这里插入图片描述

4.2 分类模型测试:show_cls.py

1,utils文件夹下的show_cls.py文件用于分类模型测试

在这里插入图片描述

2,指定两个参数即可

模型路径:parser.add_argument('--model', type=str, default = './cls/cls_model_4.pth', help='model path')
数据集的路径:root='../dataset/shapenetcore_partanno_segmentation_benchmark_v0'
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),测试成功

可以看到测试的损失和准确率,目前作者没有提供可视化结果展示
在这里插入图片描述

五、分割任务

能把分类任务跑通,分割任务都是类似的

5.1 分割模型训练:train_segmentation.py

python train_segmentation.py --dataset <dataset path> --nepoch=<number epochs>

1,文件在utils文件夹下

在这里插入图片描述

2,看README.md指定配置参数

python train_segmentation.py --dataset <dataset path> --nepoch=<number epochs>
在这里插入图片描述

3,右击运行(Ctrl + Shift + F10),开始训练

开始训练
在这里插入图片描述
epoch为25

4,epoch为25,会保存25个模型

可以看到在utils下的seg文件下有二十五个模型
在这里插入图片描述

5.2 分割任务测试:show_seg.py

1,utils文件夹下的show_seg.py文件用于分割模型测试

在这里插入图片描述

2,右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
找了一下原因,show_seg.py用到了show3d_balls.py里面的showpoints函数
show3d_balls.py又用到了一个dll文件,dll = np.ctypeslib.load_library('render_balls_so', '.')而这个是.so不是.dll(原文是在Linux下跑的)
在这里插入图片描述
故需要转换一下,通过Visual Studio创建一个动态链接库(DLL)项目,生成render_balls_so.dll放到utils文件下即可
在这里插入图片描述
我这边就不搞了,抓紧时间学习下PointNet++
参考博客:https://blog.csdn.net/qq_45369294/article/details/121041403

3,直接拿来用

render_balls_so.dll免费下载
下载是一个压缩包,里面是一个完整的Visual Studio项目,但是用不到,咱们就用到了里面的一个dll文件
在这里插入图片描述

4,再次右击运行(Ctrl + Shift + F10),报错

在这里插入图片描述
还是之前遇到的问题,导入

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

和分类任务一样,进行简单配置即可
在这里插入图片描述

5,再次右击运行(Ctrl + Shift + F10),测试成功

对Airplane进行分割,效果展示
在这里插入图片描述

六、完结

目前只是实现了代码的跑通,后续还得认真学习原理以及去修改模型架构适配自己的工作任务。

相关文章:

PyTorch复现PointNet——模型训练+可视化测试显示

因为项目涉及到3D点云项目&#xff0c;故学习下PointNet这个用来处理点云的神经网络 论文的话&#xff0c;大致都看了下&#xff0c;网络结构有了一定的了解&#xff0c;本博文主要为了下载调试PointNet网络源码&#xff0c;训练和测试调通而已。 我是在Anaconda下创建一个新的…...

分享五款软件,成为高效生活的好助手

​ 给大家分享一些优秀的软件工具,是一件让人很愉悦的事情&#xff0c;今天继续带来5款优质软件。 1.图片放大——Bigjpg ​ Bigjpg是一款图片放大软件&#xff0c;采用先进的AI算法&#xff0c;能够在不损失图片质量的前提下&#xff0c;将低分辨率图片放大至所需尺寸。无论…...

代码随想录算法训练营DAY58|101.孤岛的总面积、102.沉没孤岛、103. 水流问题、104.建造最大岛屿

忙。。。写了好久。。。。慢慢补吧。 101.孤岛的总面积 先把周边的岛屿变成水dfs def dfs(x, y, graph, s):if x<0 or x>len(graph) or y<0 or y>len(graph[0]) or graph[x][y]0:return sgraph[x][y]0s1s dfs(x1, y, graph, s)s dfs(x-1, y, graph, s)s dfs(…...

韦尔股份:深蹲起跳?

利润大增7倍&#xff0c;是反转信号还是回光返照&#xff1f; 今天我们聊聊光学半导体龙头——韦尔股份。 上周末&#xff0c;韦尔股份发布半年业绩预告&#xff0c;预计上半年净利润13至14亿&#xff0c;同比增幅高达 754%至 819%。 然而&#xff0c;回首 2023 年它的净利仅 …...

docs | 使用 sphinx 转化rst文件为html文档

1. 效果图 book 风格。 优点&#xff1a; 极简风格右边有标题导航左侧是文件导航&#xff0c;可隐藏 2. 使用方式 reST 格式&#xff0c;比markdown格式更复杂。 推荐使用 book 风格。 文档构建工具是 sphinx&#xff0c;是一个python包。 $ pip3 list | grep -i Sphinx …...

【ChatGPT 消费者偏好】第二弹:ChatGPT在日常生活中的使用—推文分享—2024-07-10

今天的推文主题还是【ChatGPT & 消费者偏好】 第一篇&#xff1a;哪些动机因素和技术特征的组合能够导致ChatGPT用户中高和低的持续使用意图。第二篇&#xff1a;用户对ChatGPT的互动性、性能期望、努力期望以及社会影响如何影响他们继续使用这些大型语言模型的意向&#x…...

Webpack配置及工作流程

Webpack是一个现代JavaScript应用程序的静态模块打包器&#xff08;module bundler&#xff09;。当Webpack处理应用程序时&#xff0c;它会在内部构建一个依赖图&#xff08;dependency graph&#xff09;&#xff0c;该图会映射项目所需的每个模块&#xff0c;并生成一个或多…...

华为ensp实现防火墙的区域管理与用户认证

实验环境 基于该总公司内网&#xff0c;实现图片所在要求 后文配置请以本图为准 接口配置与网卡配置 1、创建vlan 2、防火墙g0/0/0与云页面登录 登录admin,密码Admin123&#xff0c;自行更改新密码 更改g0/0/0口ip&#xff0c;敲下命令service-manage all permit 网卡配置…...

深入解析 Laravel 策略路由:提高应用安全性与灵活性的利器

引言 Laravel 是一个功能强大的 PHP Web 应用框架&#xff0c;以其优雅和简洁的语法而受到开发者的喜爱。在 Laravel 中&#xff0c;路由是应用中非常重要的一部分&#xff0c;它负责将用户的请求映射到相应的控制器方法上。Laravel 提供了多种路由方式&#xff0c;其中策略路…...

Java | Leetcode Java题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; class Solution {public List<String> summaryRanges(int[] nums) {List<String> ans new ArrayList<>();for (int i 0, j, n nums.length; i < n; i j 1) {j i;while (j 1 < n && nums[j 1] num…...

使用Simulink基于模型设计(三):建模并验证系统

可以对系统结构中的每个组件进行建模&#xff0c;以表示该组件的物理行为或功能行为。通过使用测试数据对组件进行仿真&#xff0c;以验证它们的基本行为。 打开系统布局 对各个组件进行建模时&#xff0c;需要从大局上把握整个系统布局。首先加载布局模型。这里以simulink自…...

基于go 1.19的站点模板爬虫

好像就三步: 1 建立http连接 2 解析html内容 3 递归遍历 创建一个基于 Go 1.19 的网站模板爬虫主要涉及几个步骤&#xff0c;包括设置 HTTP 客户端来获取网页内容、解析 HTML 来提取所需的数据&#xff0c;以及处理可能的并发和错误。下面我会给出一个简单的例子来说明如何…...

0基础学会在亚马逊云科技AWS上搭建生成式AI云原生Serverless问答QA机器人(含代码和步骤)

小李哥今天带大家继续学习在国际主流云计算平台亚马逊云科技AWS上开发生成式AI软件应用方案。上一篇文章我们为大家介绍了&#xff0c;如何在亚马逊云科技上利用Amazon SageMaker搭建、部署和测试开源模型Llama 7B。下面我将会带大家探索如何搭建高扩展性、高可用的完全托管云原…...

[PaddlePaddle飞桨] PaddleOCR图像小模型部署

PaddleOCR的GitHub项目地址 推荐环境&#xff1a; PaddlePaddle > 2.1.2 Python > 3.7 CUDA > 10.1 CUDNN > 7.6pip下载指令&#xff1a; python -m pip install paddlepaddle-gpu2.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddleocr2.7…...

C语言 | Leetcode C语言题解之第227题基本计算题II

题目&#xff1a; 题解&#xff1a; int calculate(char* s) {int n strlen(s);int stk[n], top 0;char preSign ;int num 0;for (int i 0; i < n; i) {if (isdigit(s[i])) {num num * 10 (int)(s[i] - 0);}if (!isdigit(s[i]) && s[i] ! || i n - 1) {s…...

kafka.common.KafkaException: Socket server failed to bind to xx:9092

部署分布式集群的时候遇到的错误。 解决方案: 修改config下的server.properties,添加 listenersPLAINTEXT://:9092 advertised.listenersPLAINTEXT://自己的服务器ip:9092 然后重新启动&#xff0c;检查进程是否存在ps -aux | grep kafka。 成功启动。...

【JS+H5+CSS实现烟花特效】

话不多说直接上代码 注意:背景图路径是picture/star.jpg&#xff0c;自己在同级目录先创键picture目录再下载一张图片命名为star.jpg HTML: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"vi…...

uniapp小程序使用webview 嵌套 vue 项目

uniapp小程序使用webview 嵌套 vue 项目 小程序中发送 <web-view :src"urlSrc" message"handleMessage"></web-view>export default {data() {return {urlSrc: "",};},onLoad(options) {// 我需要的参数比较多 所以比较臃肿// 获取…...

命令模式在金融业务中的应用及其框架实现

引言 命令模式(Command Pattern)是一种行为设计模式,它将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,并且支持请求的排队和撤销操作。在金融业务中,命令模式可以用于实现交易请求、撤销操作等功能。本文将介绍命令模式在金融业务中的使用,并探讨…...

WordPress的性能优化有哪些方法?

WordPress的性能优化方法主要包括以下几个方面&#xff1a; 1. 使用缓存插件&#xff1a;缓存插件可以降低服务器负载&#xff0c;提高网站加载速度。常用的缓存插件有WP Rocket、WP Fastest Cache和Cache Enabler等。 2. 代码压缩和整合&#xff1a;通过压缩JavaScript、CSS…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...