当前位置: 首页 > news >正文

力扣题解( 最长湍流子数组)

978. 最长湍流子数组

已解答

给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 

如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。

更正式地来说,当 arr 的子数组 A[i], A[i+1], ..., A[j] 满足仅满足下列条件时,我们称其为湍流子数组

  • 若 i <= k < j :
    • 当 k 为奇数时, A[k] > A[k+1],且
    • 当 k 为偶数时,A[k] < A[k+1]
  • 或 若 i <= k < j :
    • 当 k 为偶数时,A[k] > A[k+1] ,且
    • 当 k 为奇数时, A[k] < A[k+1]

本题看似例子很长,实则很简单,即湍流数组形状为W型或者M型即可(认为中间比两边高,或者中间比两边低,然后每间隔一个都符合这个定律)(其实所谓w,m也不过就是开始位置差了一个而已)。因此做法也很简单,分情况讨论即可。注意本题如果前后两个元素相等,则必定构不成湍流数组。

对于偶数位置高的,若第i个仍满足这个定律,则长度加1,而这个满足则偶数位置低的那个一定不满足,因此那个的长度变为0.对奇数位置高的同理。

class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n=arr.size();vector<int>m(n,0);vector<int>w(n,0);m[0]=w[0]=1;for(int i=1;i<n;i++){if(i%2==1){//n为偶if(arr[i]>arr[i-1]){m[i]=m[i-1]+1;w[i]=1;}else if(arr[i]<arr[i-1]){w[i]=w[i-1]+1;m[i]=1;}else{m[i]=w[i]=1;}}else {//n为奇if(arr[i]<arr[i-1]){m[i]=m[i-1]+1;w[i]=1;}else if(arr[i]>arr[i-1]){w[i]=w[i-1]+1;m[i]=1;}else{m[i]=w[i]=1;}}}int ret=1;for(int i=1;i<n;i++){int nm=max(m[i],w[i]);ret=max(nm,ret);}return ret;}
};

相关文章:

力扣题解( 最长湍流子数组)

978. 最长湍流子数组 已解答 给定一个整数数组 arr &#xff0c;返回 arr 的 最大湍流子数组的长度 。 如果比较符号在子数组中的每个相邻元素对之间翻转&#xff0c;则该子数组是 湍流子数组 。 更正式地来说&#xff0c;当 arr 的子数组 A[i], A[i1], ..., A[j] 满足仅满…...

pytorch-RNN存在的问题

这里写目录标题 1. RNN存在哪些问题呢&#xff1f;1.1 梯度弥散和梯度爆炸1.2 RNN为什么会出现梯度弥散和梯度爆炸呢&#xff1f; 2. 解决梯度爆炸方法3. Gradient Clipping的实现4. 解决梯度弥散的方法 1. RNN存在哪些问题呢&#xff1f; 1.1 梯度弥散和梯度爆炸 梯度弥散是…...

Leetcode 17:电话号码的字母组合

给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 public List<String> letterCombinations(String digits) {if (digits null || digits.length() 0) {return result;}int index0; //记录遍历digits的角标//初始…...

jmeter-beanshell学习4-beanshell截取字符串

再写个简单点的东西&#xff0c;截取字符串&#xff0c;参数化文件统一用csv&#xff0c;然后还要用excel打开&#xff0c;如果是数字很容易格式就乱了。有同事是用双引号把数字引起来&#xff0c;报文里就不用加引号了&#xff0c;但是这样beanshell处理起来&#xff0c;好像容…...

QScrollArea 设置最大的高度值

在 Qt 中&#xff0c;QScrollArea 是一个提供滚动视图的控件&#xff0c;允许用户查看大于当前视口尺寸的内容。如果你想要为 QScrollArea 设置一个最大的高度值&#xff0c;这通常不是直接通过 QScrollArea 的属性来设置的&#xff0c;而是需要调整其内容部件&#xff08;widg…...

CentOS6禁止锁屏

在电源中设置后还是会锁屏, 原因是有屏幕保护程序 电源管理都 “从不” 一些AI的回答 在CentOS 6系统中&#xff0c;如果你想要禁用锁屏功能&#xff0c;可以编辑/etc/kbd/config文件。这个文件通常包含了键盘相关的设置&#xff0c;包括密码策略和屏幕锁定选项。 首先打开终…...

MapReduce底层原理详解:大案例解析(第32天)

系列文章目录 一、MapReduce概述 二、MapReduce工作机制 三、Map&#xff0c;Shuffle&#xff0c;reduce阶段详解 四、大案例解析 文章目录 系列文章目录前言一、MapReduce概述二、MapReduce工作机制1. 角色与组件2. 作业提交与执行流程1. 作业提交&#xff1a;2. Map阶段&…...

【JVM基础篇】Java垃圾回收器介绍

垃圾回收器&#xff08;垃圾回收算法实现&#xff09; 垃圾回收器是垃圾回收算法的具体实现。由于垃圾回收器分为年轻代和老年代&#xff0c;除了G1&#xff08;既能管控新生代&#xff0c;也可以管控老年代&#xff09;之外&#xff0c;新生代、老年代的垃圾回收器必须按照ho…...

java通过poi-tl导出word实战详细步骤

文章目录 与其他模版引擎对比1.引入maven依赖包2.新建Word文档exportWprd.docx模版3.编写导出word接口代码4.导出成果 poi-tl是一个基于Apache POI的Word模板引擎&#xff0c;也是一个免费开源的Java类库&#xff0c;你可以非常方便的加入到你的项目中&#xff0c;并且拥有着让…...

将自签证书添加到Java的可信任证书列表中

文章目录 前言将自签证书添加到Java的可信任证书列表中添加到Java的可信任证书列表中 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差&#xff0c;实…...

一文清晰了解CSS——简单实例

首先一个小技巧&#xff1a; 一定要学会的vsCode格式化整理代码的快捷键&#xff0c;再也不用手动调格式了-腾讯云开发者社区-腾讯云 (tencent.com) CSS选择器用于选择要应用样式的HTML元素。常见的选择器包括&#xff1a; 类选择器&#xff1a;以.开头&#xff0c;用于选择具…...

工程师 - 什么是XML文件

XML&#xff08;eXtensible Markup Language&#xff0c;扩展标记语言&#xff09;文件是一种使用自定义标签来定义对象及其内部数据的纯文本文件。XML设计的目的是既易于人类阅读又易于机器解析&#xff0c;因此它在不同系统和应用之间传输和存储数据时非常有用。 XML的主要特…...

[AI 大模型] 阿里巴巴 通义千问

文章目录 [AI 大模型] 阿里巴巴 通义千问简介模型架构发展新技术和优势示例 [AI 大模型] 阿里巴巴 通义千问 简介 阿里巴巴的 通义千问 是由阿里云开发的一款大型语言模型&#xff0c;旨在为用户提供高效、智能的自然语言处理服务。 通义千问能够处理多种语言输入&#xff0c…...

关于无法定位程序输入点 SetDefaultDllDirectories于动态链接库KERNEL32.dll 上 解决方法

文章目录 1. ERNEL32.dll 下载2. 解决方法 &#x1f44d; 个人网站:【 洛秋小站】 1. ERNEL32.dll 下载 Windows 7 在安装postman时报错缺少动态链接库,提示缺少.NET Framework,这是因为本地缺少相应的dll文件导致的&#xff0c;这时就需要下载ERNEL32.dll文件&#xff0c;在解…...

轻松创建对象——简单工厂模式(Java实现)

1. 引言 大家好&#xff0c;又见面了&#xff01;在上一篇文章中&#xff0c;我们通过Python示例介绍了简单工厂模式&#xff0c;今天&#xff0c;我们继续深入这个话题&#xff0c;用Java来实现简单工厂模式。 2. 什么是简单工厂模式 简单工厂模式&#xff08;Simple Facto…...

Docker Dockerfile:构建与优化

Docker Dockerfile&#xff1a;构建与优化 简介 Docker 是一种广泛使用的容器化技术&#xff0c;它允许开发人员将应用程序及其依赖环境打包到一个可移植的容器中。Dockerfile 是 Docker 中用于自动化容器镜像构建的脚本文件。本文将详细介绍 Dockerfile 的基本结构、指令使用…...

开源项目有哪些机遇与挑战?

随着全球经济和科技环境的快速变化&#xff0c;开源软件项目的蓬勃发展成为了开发者社区的热门话题。越来越多的开发者和企业选择参与开源项目&#xff0c;以推动技术创新和实现协作共赢。本文将从开源项目的发展趋势、参与开源的经验分享以及开源项目的挑战三个方面进行探讨。…...

利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案

目录 1. 问题背景和描述 1.1 问题背景 1.2 问题描述 2. 数学模型的建立 2.1决策变量 2.2 目标函数 2.3 约束条件 2.4 数学模型总结 3. 使用Python解决线性规划问题 3.1 导入必要的库 3.2 定义目标函数系数 3.3 定义不等式约束矩阵和向量 3.4 定义变量的边界 非负…...

【spark】Exception in thread “main“ ExitCodeException exitCode=-1073741701

在window上运行spark程序写到本地文件的时候报错。 val rdd sc.sparkContext.parallelize(list)val arr rdd.collect()arr.foreach(println)rdd.saveAsTextFile("test1")sc.close()错误信息: zhangsan lisi wangwu Exception in thread "main" ExitCode…...

数学建模美赛经验小结

图片资料来自网络所听讲座&#xff0c;感谢分享&#xff01;...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...