机器学习库实战:DL4J与Weka在Java中的应用
机器学习是当今技术领域的热门话题,而Java作为一门广泛使用的编程语言,也有许多强大的机器学习库可供选择。本文将深入探讨两个流行的Java机器学习库:Deeplearning4j(DL4J)和Weka,并通过详细的代码示例帮助新手理解它们的实战应用。
1. Deeplearning4j(DL4J)简介
Deeplearning4j(DL4J)是一个用于Java和JVM的开源深度学习库,它支持各种神经网络架构,包括卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)。DL4J旨在与Hadoop和Spark等大数据技术无缝集成。
1.1 安装与配置
首先,我们需要在项目中添加DL4J的依赖。如果你使用的是Maven,可以在pom.xml文件中添加以下依赖:
<dependencies><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>1.0.0-beta7</version></dependency><dependency><groupId>org.nd4j</groupId><artifactId>nd4j-native-platform</artifactId><version>1.0.0-beta7</version></dependency>
</dependencies>
1.2 构建一个简单的神经网络
接下来,我们将构建一个简单的多层感知器(MLP)神经网络来解决分类问题。以下是一个完整的代码示例:
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.weights.WeightInit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;public class SimpleMLP {public static void main(String[] args) {int numInputs = 2;int numOutputs = 2;int numHiddenNodes = 20;NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder().seed(123).optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Nesterovs(0.1, 0.9)).list();builder.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes).activation(Activation.RELU).weightInit(WeightInit.XAVIER).build());builder.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nIn(numHiddenNodes).nOut(numOutputs).activation(Activation.SOFTMAX).weightInit(WeightInit.XAVIER).build());builder.build();}
}
1.3 训练与评估
为了训练和评估模型,我们需要加载数据并进行预处理。以下是一个简化的示例:
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.factory.Nd4j;public class SimpleMLP {public static void main(String[] args) {// 构建网络配置NeuralNetConfiguration.ListBuilder builder = ...;MultiLayerNetwork network = new MultiLayerNetwork(builder.build());network.init();network.setListeners(new ScoreIterationListener(10));// 加载数据DataSetIterator iterator = new ListDataSetIterator<>(...);// 数据预处理DataNormalization normalizer = new NormalizerStandardize();normalizer.fit(iterator);iterator.setPreProcessor(normalizer);// 训练模型for (int i = 0; i < numEpochs; i++) {network.fit(iterator);iterator.reset();}// 评估模型Evaluation eval = network.evaluate(iterator);System.out.println(eval.stats());}
}
2. Weka简介
Weka(Waikato Environment for Knowledge Analysis)是一个用于数据挖掘任务的机器学习库,它提供了大量的算法和工具来处理数据预处理、分类、回归、聚类和关联规则挖掘等任务。
2.1 安装与配置
Weka可以通过其官方网站下载,也可以通过Maven依赖添加到项目中。以下是Maven依赖配置:
<dependencies><dependency><groupId>nz.ac.waikato.cms.weka</groupId><artifactId>weka-stable</artifactId><version>3.8.0</version></dependency>
</dependencies>
2.2 使用Weka进行分类
以下是一个使用Weka进行分类任务的示例:
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.Logistic;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;public class WekaClassifierExample {public static void main(String[] args) throws Exception {// 加载数据DataSource source = new DataSource("path/to/your/data.arff");Instances data = source.getDataSet();data.setClassIndex(data.numAttributes() - 1);// 构建分类器Classifier classifier = new Logistic();classifier.buildClassifier(data);// 评估分类器Evaluation eval = new Evaluation(data);eval.crossValidateModel(classifier, data, 10, new Random(1));// 输出结果System.out.println(eval.toSummaryString("\nResults\n======\n", false));}
}
2.3 使用Weka进行聚类
以下是一个使用Weka进行聚类任务的示例:
import weka.clusterers.ClusterEvaluation;
import weka.clusterers.SimpleKMeans;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;public class WekaClusteringExample {public static void main(String[] args) throws Exception {// 加载数据DataSource source = new DataSource("path/to/your/data.arff");Instances data = source.getDataSet();// 构建聚类器SimpleKMeans kMeans = new SimpleKMeans();kMeans.setNumClusters(3);kMeans.buildClusterer(data);// 评估聚类器ClusterEvaluation eval = new ClusterEvaluation();eval.setClusterer(kMeans);eval.evaluateClusterer(data);// 输出结果System.out.println(eval.clusterResultsToString());}
}
3. 总结
本文详细介绍了Deeplearning4j(DL4J)和Weka这两个强大的Java机器学习库,并通过代码示例展示了它们在分类和聚类任务中的应用。无论是深度学习还是传统的机器学习任务,DL4J和Weka都提供了丰富的功能和灵活的接口,可以满足不同场景的需求。
相关文章:
机器学习库实战:DL4J与Weka在Java中的应用
机器学习是当今技术领域的热门话题,而Java作为一门广泛使用的编程语言,也有许多强大的机器学习库可供选择。本文将深入探讨两个流行的Java机器学习库:Deeplearning4j(DL4J)和Weka,并通过详细的代码示例帮助…...
MongoDB教程(一):Linux系统安装mongoDB详细教程
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、Ubuntu…...
leetcode74. 搜索二维矩阵
给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。…...
Redis 布隆过滤器性能对比分析
redis 实现布隆过滤器实现方法: 1、redis 的 setbit 和 getbit 特点:对于某个bit 设置0或1,对于大量的值需要存储,非常节省空间,查询速度极快,但是不能查询整个key所有的bit,在一次请求有大量…...
Java List不同实现类的对比
List不同实现类的对比 文章目录 List不同实现类的对比实现类之一ArrayList实现类之二 LinkedList实现类之三 Vector练习 java.util.Collection用于存储一个一个数据的框架子接口:List存储有序的、可重复的数据(相当于动态数组) ArrayList lis…...
【C语言】 —— 预处理详解(下)
【C语言】 —— 预处理详解(下) 前言七、# 和 \##7.1 # 运算符7.2 ## 运算符 八、命名约定九、# u n d e f undef undef十、命令行定义十一、条件编译11.1、单分支的条件编译11.2、多分支的条件编译11.3、判断是否被定义11.4、嵌套指令 十二、头文件的包…...
Jupyter Notebook简介
Jupyter Notebook是一个开源的Web应用程序,允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它广泛用于数据清理和转换、数值模拟、统计建模、机器学习等领域。 Jupyter Notebook的优势包括: 1. **交互式计算**:可以在网页…...
ChatGPT 5.0:一年后的猜想
对于ChatGPT 5.0在未来一年半后的展望与看法,我们可以从以下几个方面进行详细探讨: 一、技术提升与功能拓展 语言翻译能力: ChatGPT 5.0在语言翻译方面有望实现更大突破。据推测,新版本将利用更先进的自然语言处理技术和深度学习…...
Java套红:指定位置合并文档-NiceXWPFDocument
需求:做个公文系统,需要将正文文档在某个节点点击套红按钮,实现文档套红 试了很多方法,大多数网上能查到但是实际代码不能找到关键方法,可能是跟包的版本有关系,下面记录能用的这个。 一:添加依…...
【操作系统】进程管理——进程的同步与互斥(个人笔记)
学习日期:2024.7.8 内容摘要:进程同步/互斥的概念和意义,基于软/硬件的实现方法 进程同步与互斥的概念和意义 为什么要有进程同步机制? 回顾:在《进程管理》第一章中,我们学习了进程具有异步性的特征&am…...
Qt:13.多元素控件(QLinstWidget-用于显示项目列表的窗口部件、QTableWidget- 用于显示二维数据表)
目录 一、QLinstWidget-用于显示项目列表的窗口部件: 1.1QLinstWidget介绍: 1.2属性介绍: 1.3常用方法介绍: 1.4信号介绍: 1.5实例演示: 二、QTableWidget- 用于显示二维数据表: 2.1QTabl…...
恢复出厂设置手机变成砖
上周,许多Google Pixel 6(6、6a、6 Pro)手机用户在恢复出厂设置后都面临着设备冻结的问题。 用户说他们在下载过程中遇到了丢失 tune2fs 文件的错误 。 这会导致屏幕显示以下消息:“Android 系统无法启动。您的数据可能会被损坏…...
解决IntelliJ IDEA中克隆GitHub项目不显示目录结构的问题
前言 当您从GitHub等代码托管平台克隆项目到IntelliJ IDEA,却遇到项目目录结构未能正确加载的情况时,不必太过困扰,本文将为您提供一系列解决方案,帮助您快速找回丢失的目录视图。 1. 调整Project View设置 操作步骤࿱…...
Git错误分析
错误案例1: 原因:TortoiseGit多次安装导致,会记录首次安装路径,若安装路径改变,需要配置最后安装的路径。...
pom.xml中重要标签介绍
在 Maven 项目中,pom.xml 文件是项目对象模型(POM)的配置文件,它定义了项目的依赖关系、插件、构建配置等。以下是 pom.xml 文件中一些重要的标签及其作用: <modelVersion>: 定义 POM 模型的版本。当…...
大模型日报 2024-07-11
大模型日报 2024-07-11 大模型资讯 CVPR世界第二仅次Nature!谷歌2024学术指标出炉,NeurIPS、ICLR跻身前十 谷歌2024学术指标公布,CVPR位居第二,超越Science仅次于Nature。CVPR、NeurIPS、ICLR三大顶会跻身TOP 10。 CVPR成全球第二…...
Redis基础教程(十六):Redis Stream
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝Ὁ…...
机器学习筑基篇,容器调用显卡计算资源,Ubuntu 24.04 快速安装 NVIDIA Container Toolkit!...
[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] Ubuntu 24.04 安装 NVIDIA Container Toolkit 什么是 NVIDIA Container Toolkit? 描述:NVIDIA Container Toolkit(容器工具包)使用户能够构建和运行 GPU 加速的容器,该工具包括一个容器运行时库和实用程序,用于自动…...
全网第一个java链接阿里云redis并可操作
添加依赖 redis.clients jedis 5.1.2 然后通过 JedisPool pool new JedisPool(host3, 6379); Jedis jedis pool.getResource(); jedis.auth(“username”,“password”); jedis.set(“ab”,“ab”); System.out.println(jedis.get(“ab”)); 即可链接成功,成功…...
Mysql ORDER BY是否走索引?
在 MySQL 中,ORDER BY 子句是否使用索引取决于多种因素,包括查询的具体情况、索引的类型和结构、查询中的其他条件等。 使用索引的情况 单列索引和 ORDER BY: 当 ORDER BY 子句中的列有单列索引时,MySQL 可以利用该索引来加速排序…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
