当前位置: 首页 > news >正文

机器学习库实战:DL4J与Weka在Java中的应用

机器学习是当今技术领域的热门话题,而Java作为一门广泛使用的编程语言,也有许多强大的机器学习库可供选择。本文将深入探讨两个流行的Java机器学习库:Deeplearning4j(DL4J)和Weka,并通过详细的代码示例帮助新手理解它们的实战应用。

1. Deeplearning4j(DL4J)简介

Deeplearning4j(DL4J)是一个用于Java和JVM的开源深度学习库,它支持各种神经网络架构,包括卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)。DL4J旨在与Hadoop和Spark等大数据技术无缝集成。

1.1 安装与配置

首先,我们需要在项目中添加DL4J的依赖。如果你使用的是Maven,可以在pom.xml文件中添加以下依赖:

<dependencies><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>1.0.0-beta7</version></dependency><dependency><groupId>org.nd4j</groupId><artifactId>nd4j-native-platform</artifactId><version>1.0.0-beta7</version></dependency>
</dependencies>

1.2 构建一个简单的神经网络

接下来,我们将构建一个简单的多层感知器(MLP)神经网络来解决分类问题。以下是一个完整的代码示例:

import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.weights.WeightInit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;public class SimpleMLP {public static void main(String[] args) {int numInputs = 2;int numOutputs = 2;int numHiddenNodes = 20;NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder().seed(123).optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Nesterovs(0.1, 0.9)).list();builder.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes).activation(Activation.RELU).weightInit(WeightInit.XAVIER).build());builder.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nIn(numHiddenNodes).nOut(numOutputs).activation(Activation.SOFTMAX).weightInit(WeightInit.XAVIER).build());builder.build();}
}

1.3 训练与评估

为了训练和评估模型,我们需要加载数据并进行预处理。以下是一个简化的示例:

import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.factory.Nd4j;public class SimpleMLP {public static void main(String[] args) {// 构建网络配置NeuralNetConfiguration.ListBuilder builder = ...;MultiLayerNetwork network = new MultiLayerNetwork(builder.build());network.init();network.setListeners(new ScoreIterationListener(10));// 加载数据DataSetIterator iterator = new ListDataSetIterator<>(...);// 数据预处理DataNormalization normalizer = new NormalizerStandardize();normalizer.fit(iterator);iterator.setPreProcessor(normalizer);// 训练模型for (int i = 0; i < numEpochs; i++) {network.fit(iterator);iterator.reset();}// 评估模型Evaluation eval = network.evaluate(iterator);System.out.println(eval.stats());}
}

2. Weka简介

Weka(Waikato Environment for Knowledge Analysis)是一个用于数据挖掘任务的机器学习库,它提供了大量的算法和工具来处理数据预处理、分类、回归、聚类和关联规则挖掘等任务。

2.1 安装与配置

Weka可以通过其官方网站下载,也可以通过Maven依赖添加到项目中。以下是Maven依赖配置:

<dependencies><dependency><groupId>nz.ac.waikato.cms.weka</groupId><artifactId>weka-stable</artifactId><version>3.8.0</version></dependency>
</dependencies>

2.2 使用Weka进行分类

以下是一个使用Weka进行分类任务的示例:

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.Logistic;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;public class WekaClassifierExample {public static void main(String[] args) throws Exception {// 加载数据DataSource source = new DataSource("path/to/your/data.arff");Instances data = source.getDataSet();data.setClassIndex(data.numAttributes() - 1);// 构建分类器Classifier classifier = new Logistic();classifier.buildClassifier(data);// 评估分类器Evaluation eval = new Evaluation(data);eval.crossValidateModel(classifier, data, 10, new Random(1));// 输出结果System.out.println(eval.toSummaryString("\nResults\n======\n", false));}
}

2.3 使用Weka进行聚类

以下是一个使用Weka进行聚类任务的示例:

import weka.clusterers.ClusterEvaluation;
import weka.clusterers.SimpleKMeans;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;public class WekaClusteringExample {public static void main(String[] args) throws Exception {// 加载数据DataSource source = new DataSource("path/to/your/data.arff");Instances data = source.getDataSet();// 构建聚类器SimpleKMeans kMeans = new SimpleKMeans();kMeans.setNumClusters(3);kMeans.buildClusterer(data);// 评估聚类器ClusterEvaluation eval = new ClusterEvaluation();eval.setClusterer(kMeans);eval.evaluateClusterer(data);// 输出结果System.out.println(eval.clusterResultsToString());}
}

3. 总结

本文详细介绍了Deeplearning4j(DL4J)和Weka这两个强大的Java机器学习库,并通过代码示例展示了它们在分类和聚类任务中的应用。无论是深度学习还是传统的机器学习任务,DL4J和Weka都提供了丰富的功能和灵活的接口,可以满足不同场景的需求。

相关文章:

机器学习库实战:DL4J与Weka在Java中的应用

机器学习是当今技术领域的热门话题&#xff0c;而Java作为一门广泛使用的编程语言&#xff0c;也有许多强大的机器学习库可供选择。本文将深入探讨两个流行的Java机器学习库&#xff1a;Deeplearning4j&#xff08;DL4J&#xff09;和Weka&#xff0c;并通过详细的代码示例帮助…...

MongoDB教程(一):Linux系统安装mongoDB详细教程

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、Ubuntu…...

leetcode74. 搜索二维矩阵

给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。…...

Redis 布隆过滤器性能对比分析

redis 实现布隆过滤器实现方法&#xff1a; 1、redis 的 setbit 和 getbit 特点&#xff1a;对于某个bit 设置0或1&#xff0c;对于大量的值需要存储&#xff0c;非常节省空间&#xff0c;查询速度极快&#xff0c;但是不能查询整个key所有的bit&#xff0c;在一次请求有大量…...

Java List不同实现类的对比

List不同实现类的对比 文章目录 List不同实现类的对比实现类之一ArrayList实现类之二 LinkedList实现类之三 Vector练习 java.util.Collection用于存储一个一个数据的框架子接口&#xff1a;List存储有序的、可重复的数据&#xff08;相当于动态数组&#xff09; ArrayList lis…...

【C语言】 —— 预处理详解(下)

【C语言】 —— 预处理详解&#xff08;下&#xff09; 前言七、# 和 \##7.1 # 运算符7.2 ## 运算符 八、命名约定九、# u n d e f undef undef十、命令行定义十一、条件编译11.1、单分支的条件编译11.2、多分支的条件编译11.3、判断是否被定义11.4、嵌套指令 十二、头文件的包…...

Jupyter Notebook简介

Jupyter Notebook是一个开源的Web应用程序&#xff0c;允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它广泛用于数据清理和转换、数值模拟、统计建模、机器学习等领域。 Jupyter Notebook的优势包括&#xff1a; 1. **交互式计算**&#xff1a;可以在网页…...

ChatGPT 5.0:一年后的猜想

对于ChatGPT 5.0在未来一年半后的展望与看法&#xff0c;我们可以从以下几个方面进行详细探讨&#xff1a; 一、技术提升与功能拓展 语言翻译能力&#xff1a; ChatGPT 5.0在语言翻译方面有望实现更大突破。据推测&#xff0c;新版本将利用更先进的自然语言处理技术和深度学习…...

Java套红:指定位置合并文档-NiceXWPFDocument

需求&#xff1a;做个公文系统&#xff0c;需要将正文文档在某个节点点击套红按钮&#xff0c;实现文档套红 试了很多方法&#xff0c;大多数网上能查到但是实际代码不能找到关键方法&#xff0c;可能是跟包的版本有关系&#xff0c;下面记录能用的这个。 一&#xff1a;添加依…...

【操作系统】进程管理——进程的同步与互斥(个人笔记)

学习日期&#xff1a;2024.7.8 内容摘要&#xff1a;进程同步/互斥的概念和意义&#xff0c;基于软/硬件的实现方法 进程同步与互斥的概念和意义 为什么要有进程同步机制&#xff1f; 回顾&#xff1a;在《进程管理》第一章中&#xff0c;我们学习了进程具有异步性的特征&am…...

Qt:13.多元素控件(QLinstWidget-用于显示项目列表的窗口部件、QTableWidget- 用于显示二维数据表)

目录 一、QLinstWidget-用于显示项目列表的窗口部件&#xff1a; 1.1QLinstWidget介绍&#xff1a; 1.2属性介绍&#xff1a; 1.3常用方法介绍&#xff1a; 1.4信号介绍&#xff1a; 1.5实例演示&#xff1a; 二、QTableWidget- 用于显示二维数据表&#xff1a; 2.1QTabl…...

恢复出厂设置手机变成砖

上周&#xff0c;许多Google Pixel 6&#xff08;6、6a、6 Pro&#xff09;手机用户在恢复出厂设置后都面临着设备冻结的问题。 用户说他们在下载过程中遇到了丢失 tune2fs 文件的错误 。 这会导致屏幕显示以下消息&#xff1a;“Android 系统无法启动。您的数据可能会被损坏…...

解决IntelliJ IDEA中克隆GitHub项目不显示目录结构的问题

前言 当您从GitHub等代码托管平台克隆项目到IntelliJ IDEA&#xff0c;却遇到项目目录结构未能正确加载的情况时&#xff0c;不必太过困扰&#xff0c;本文将为您提供一系列解决方案&#xff0c;帮助您快速找回丢失的目录视图。 1. 调整Project View设置 操作步骤&#xff1…...

Git错误分析

错误案例1&#xff1a; 原因&#xff1a;TortoiseGit多次安装导致&#xff0c;会记录首次安装路径&#xff0c;若安装路径改变&#xff0c;需要配置最后安装的路径。...

pom.xml中重要标签介绍

在 Maven 项目中&#xff0c;pom.xml 文件是项目对象模型&#xff08;POM&#xff09;的配置文件&#xff0c;它定义了项目的依赖关系、插件、构建配置等。以下是 pom.xml 文件中一些重要的标签及其作用&#xff1a; <modelVersion>&#xff1a; 定义 POM 模型的版本。当…...

大模型日报 2024-07-11

大模型日报 2024-07-11 大模型资讯 CVPR世界第二仅次Nature&#xff01;谷歌2024学术指标出炉&#xff0c;NeurIPS、ICLR跻身前十 谷歌2024学术指标公布&#xff0c;CVPR位居第二&#xff0c;超越Science仅次于Nature。CVPR、NeurIPS、ICLR三大顶会跻身TOP 10。 CVPR成全球第二…...

Redis基础教程(十六):Redis Stream

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…...

机器学习筑基篇,容器调用显卡计算资源,Ubuntu 24.04 快速安装 NVIDIA Container Toolkit!...

[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] Ubuntu 24.04 安装 NVIDIA Container Toolkit 什么是 NVIDIA Container Toolkit? 描述:NVIDIA Container Toolkit(容器工具包)使用户能够构建和运行 GPU 加速的容器,该工具包括一个容器运行时库和实用程序,用于自动…...

全网第一个java链接阿里云redis并可操作

添加依赖 redis.clients jedis 5.1.2 然后通过 JedisPool pool new JedisPool(host3, 6379); Jedis jedis pool.getResource(); jedis.auth(“username”,“password”); jedis.set(“ab”,“ab”); System.out.println(jedis.get(“ab”)); 即可链接成功&#xff0c;成功…...

Mysql ORDER BY是否走索引?

在 MySQL 中&#xff0c;ORDER BY 子句是否使用索引取决于多种因素&#xff0c;包括查询的具体情况、索引的类型和结构、查询中的其他条件等。 使用索引的情况 单列索引和 ORDER BY&#xff1a; 当 ORDER BY 子句中的列有单列索引时&#xff0c;MySQL 可以利用该索引来加速排序…...

图纸文档管理新篇章:陕西航沣与三品软件合作 优化研发流程

近日&#xff0c;陕西航沣新材料有限公司与三品软件正式达成合作协议&#xff0c;共同打造高效、智能的图纸文档管理平台。此次合作旨在赋能陕西航沣在高性能碳纤维增强纸基摩擦材料领域的创新与发展&#xff0c;提升企业的核心竞争力。 客户简介 陕西航沣新材料有限公司&…...

链式队列的实现

//1:创建循环队列 //2:判空 //4:入队 //5:出队 //6:遍历 //7:队列长度 //8:销毁 main.c #include"loop.h" int main(int argc, const char *argv[]) {loop_p Lloop_create();//创建loop_empty(L);//判空loop_length(L);//长度loop_input(L,10);//入队loop_input(L,…...

深入剖析3D企业云展厅的价值,多维展示和精准营销的创新结合

一、3D企业云展厅的多维展示优势 1、全方位展示企业展品 3D企业云展厅通过3D建模技术为企业提供了全方位的展品展示平台。相比于传统平面的图片或视频&#xff0c;3D展厅能够让用户以任意角度观看展品&#xff0c;仿佛置身于真实展厅中。这种全方位展示不仅能够增加展品的真实…...

前台线程和后台线程(了解篇)

在多线程编程中&#xff0c;理解线程的不同类型对于编写高效、稳定的程序至关重要。特别地&#xff0c;前台线程&#xff08;Foreground Threads&#xff09;与后台线程&#xff08;Background Threads&#xff09;在行为上有着根本的区别&#xff0c;这些区别直接影响到程序的…...

最强文本编辑器 VIM 指令大全

Vim 是从 Vi 编辑器发展出来的一款极其强大的文本编辑器&#xff0c;它保留了 Vi 编辑器的所有功能&#xff0c;并添加了许多新特性。Vim 具有代码补全、语法高亮、错误跳转、批量化处理等编辑功能&#xff0c;还支持异常丰富的插件扩展&#xff0c;且整个编辑全程可通过键盘完…...

卤味江湖中,周黑鸭究竟该抓住什么赛点?

近年来&#xff0c;卤味江湖的决斗从未停止。 随着休闲卤味、佐餐卤味等细分赛道逐渐形成&#xff0c;“卤味三巨头”&#xff08;周黑鸭、绝味食品、煌上煌&#xff09;的牌桌上有了更多新对手&#xff0c;赛道变挤了&#xff0c;“周黑鸭们”也到了转型关键期。 这个夏天&a…...

2024年西安铁一中集训DAY1---- 杂题选讲

文章目录 牛客练习赛125 E 联谊活动&#xff08;枚举&#xff0c;分讨&#xff09;牛客练习赛125 F 玻璃弹珠&#xff08;类莫队&#xff0c;离线询问&#xff0c;数据结构&#xff09;2024ccpc长春邀请赛 D Parallel Lines&#xff08;随机化&#xff09;2024ccpc长春邀请赛 E…...

Python爬虫:BeautifulSoup的基本使用方法!

1.简介 Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析“标签树”等功能。它是一个工具箱&#xff0c;通过解析文档为用户提供需要抓取的数据&#xff0c;因为简单&#xff0c;所以不需要多少代码就可以写出一个完整的应用程序。 Beautiful Soup…...

【自监督学习】DINO in ICCV 2021

一、引言 论文&#xff1a; DINO: Emerging Properties in Self-Supervised Vision Transformers 作者&#xff1a; Facebook AI Research 代码&#xff1a; DINO 特点&#xff1a; 对于一张图片&#xff0c;该方法首先进行全局和局部的裁剪与增强并分别送入教师和学生网络&am…...

使用simulink进行esp32开发,进行串口收发数据需要注意的地方,为什么收发不成功

1&#xff0c;主要是因为simulink里的配置文件配置的波特率和串口接受软件配置的波特不一致导致的 2&#xff0c;主要有以下三个界面 a.配置文件 b.模型 模型直接选择使用的是那组串口就行了&#xff0c;一般情况下我们收发使用同一组就可以&#xff0c;这样收发模块填写的端…...