(深度估计学习)Depth Anything V2 复现
Depth Anything V2 复现
- 一、配置环境
- 二、准备数据
- 1. 权重文件
- 2. 训练数据
- 三、Test
- 四、Train
代码:https://github.com/DepthAnything/Depth-Anything-V2
一、配置环境
在本机电脑win跑之后依旧爆显存,放到服务器跑:Ubuntu22.04,CUDA17
conda create -n DAv2 python=3.10
conda activate DAv2
conda下安装cuda。由于服务器上面我不能安装CUDA,只能在conda上安装cuda。我安装的cuda11.7。
跟着下面的教程做:
conda虚拟环境中安装cuda和cudnn,再也不用头疼版本号的问题了
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/linux-64/cudatoolkit-11.7.1-h4bc3d14_13.conda
conda install --use-local cudatoolkit-11.7.1-h4bc3d14_13.conda
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/linux-64/cudnn-8.9.7.29-hcdd5f01_2.conda
conda install --use-local cudnn-8.9.7.29-hcdd5f01_2.conda
安装其他依赖
记得在requirements.txt中增加tensorboard、h5py
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
检查torch是否安装正确以及cuda版本
python
import torch
torch.cuda.is_available()
torch.version.cuda
二、准备数据
1. 权重文件
将pre-trained-models放在 DepthAnythingV2/checkpoints 文件夹
2. 训练数据
训练的时候需要,我这里之前就准备了vkitti。我先用vkitti数据跑一下试一下。
三、Test
Running script on images:
python run.py \--encoder <vits | vitb | vitl | vitg> \--img-path <path> --outdir <outdir> \[--input-size <size>] [--pred-only] [--grayscale]
Options:
- –img-path: You can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3)
point it a text file storing all image paths.- –input-size (optional): By default, we use input size 518 for model inference. You can increase the size for even more fine-grained
results.- –pred-only (optional): Only save the predicted depth map, without raw image.
- –grayscale (optional): Save the grayscale depth map, without applying color palette.
For example:
python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
Running script on videos
python run_video.py \--encoder <vits | vitb | vitl | vitg> \--video-path assets/examples_video --outdir video_depth_vis \[--input-size <size>] [--pred-only] [--grayscale]
Our larger model has better temporal consistency on videos.
四、Train
根据自己的数据修改DepthAnythingV2/metric_depth/dataset/splits和train.py中的路径数据
sh dist_train.sh
但我运行不了这个sh文件,所以我选择直接配置.vscode/launch.json。并且我将我的train代码改为了非分布式的。
{// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387"version": "0.2.0","configurations": [{"name": "Python 调试程序: train.py","type": "debugpy","request": "launch","program": "${workspaceFolder}/metric_depth/train.py","console": "integratedTerminal","args": ["--epoch", "120","--encoder", "vitl","--bs", "2","--lr", "0.000005","--save-path", "./exp/vkitti","--dataset", "vkitti","--img-size", "518","--min-depth", "0.001","--max-depth", "20","--pretrained-from", "./checkpoints/depth_anything_v2_vitl.pth", ],"env": {"MASTER_ADDR": "localhost","MASTER_PORT": "20596"}},{"name":"Python 调试程序: run.py","type": "debugpy","request": "launch","program": "${workspaceFolder}/run.py","console": "integratedTerminal","args": ["--encoder", "vitl","--img-path", "assets/examples","--outdir", "output/depth_anything_v2_vitl_test","--checkpoints","checkpoints/depth_anything_v2_vitl_test.pth"],}]
}
相关文章:
(深度估计学习)Depth Anything V2 复现
Depth Anything V2 复现 一、配置环境二、准备数据1. 权重文件2. 训练数据 三、Test四、Train 代码:https://github.com/DepthAnything/Depth-Anything-V2 一、配置环境 在本机电脑win跑之后依旧爆显存,放到服务器跑:Ubuntu22.04,…...
C语言——printf、scanf、其他输入输出函数
printf函数 1.printf 函数的一般格式: printf 函数的一般格式为printf(格式控制,输出表列) 例如: printf("%d,%c\n",i,c); (1)“格式控制" 是用双撇号括起来的一个字符串,称“转换控制字符串”,简称“格式字符串”。它包括…...
adb 常用的命令总结
1、adb logcat 抓取日志 adb logcat > d:\log.txt Ctrlc 结束日志抓取 adb logcat -c > d:\log.txt 清空旧日志 发生Native Crash 时,抓取错误报告 adb logcat -b crash 抓取筛选后的日志: adb logcat -s AndroidRuntime > d:\log…...
Java发展过程中,JVM的演进
1. 初期的JVM(Java 1.0 到 Java 1.1) Java 1.0 于1996年发布,最初的JVM设计主要是为了跨平台兼容性和基本的垃圾回收功能。早期的JVM以解释执行字节码为主,性能相对较低。 2. 引入即时编译(JIT)ÿ…...
笔记:在Entity Framework Core中如何处理多线程操作DbContext
一、目的: 在使用Entity Framework Core (EF Core) 进行多线程操作时,需要特别注意,因为DbContext类并不是线程安全的。这意味着,你不能从多个线程同时使用同一个DbContext实例进行操作。尝试这样做可能会导致数据损坏、异常或不可…...
RabbitMQ 高级功能
RabbitMQ 是一个广泛使用的开源消息代理,它支持多种消息传递协议,可以在分布式系统中用于可靠的消息传递。除了基本的消息队列功能外,RabbitMQ 还提供了一些高级功能,增强了其在高可用性、扩展性和灵活性方面的能力。以下是一些主…...
软件架构之开发管理
软件架构之开发管理 第 13 章:开发管理13.1 项目的范围、时间与成本13.1.1 项目范围管理13.1.2 项目成本管理13.1.3 项目时间管理 13.2 配置管理与文档管理13.2.1 软件配置管理的概念13.2.2 软件配置管理的解决方案13.2.3 软件文档管理 13.3 软件需求管理13.3.1 需求…...
【Linux 基础】df -h 的输出信息解读
df -h 的输出信息 xxx:~$ df -h Filesystem Size Used Avail Use% Mounted on udev 16G 0 16G 0% /dev tmpfs 3.2G 792K 3.2G 1% /run /dev/sda1 32G 1.7G 30G 6% / tmpfs 16G 0 16G 0% /dev/shm tmp…...
南航秋招指南,线上测评和线下考试
南航秋招简介 南航作为国内一流的航空公司,对人才的需求量非常旺盛,每年也有很多专业对口的工作提供给应届毕业生,对于应届毕业生而言,一定要抓住任何一个应聘机会,并且在规定的范围内进行简历的提交,以便…...
用MATLAB绘制三向应力圆
% 定义主应力值 sigma1 100; % MPa sigma2 50; % MPa sigma3 -33; % MPa sigma_m1(sigma1 sigma3)/2; sigma_m2(sigma1 sigma2)/2; sigma_m3(sigma2 sigma3)/2; % 计算半径 r1 (sigma1 - sigma3) / 2; r2 (sigma1 - sigma2) / 2; r3 (sigma2 - sigma3…...
PyTorch 1-深度学习
深度学习-PyTorch 一: Pytorch1> pytorch简介2> PyTorch 特点&优势3> pytorch简史4> pytorch 库5> PyTorch执行流程6> PyTorch 层次结构二: PyTorch常用的高级API和函数1> 自动求导(Autograd)2> 模型容器(Module)3> 优化器(Optimizer)4&g…...
Hi3861鸿蒙开发环境搭建
1.1 安装配置Visual Studio Code 打开Download Visual Studio Code - Mac, Linux, Windows选择下载安装Windows系统的Visual Studio Code。 下载后进行安装。Visual Studio Code安装完成后,通过内置的插件市场搜索并安装开发所需的插件如图所示: 1.2 安…...
解决RedisTemplate配置JSON序列化后@Cacheable序列化仍然是JDK序列化的问题
问题现象 在参考网上的Redis集成后,配置了RedisTemplate的序列化,配置成功后Cacheable注解的缓存仍然是jdk的序列化,配置无效。 参考配置的类似代码: Bean("redisTemplate") public RedisTemplate<Object, Objec…...
人脸检测+调整分辨率+调整帧率
初始检测:只在视频的前几秒内进行一次人脸检测,以确定主持人的大致位置。计算裁剪框:基于检测到的主持人位置,计算一个以主持人面部为中心的固定裁剪框。视频裁剪:使用计算出的裁剪框对整个视频进行裁剪,将…...
C++相关概念和易错语法(19)(继承规则、继承下的构造和析构、函数隐藏)
1.继承规则 继承的本质是复用,是结构上的继承而不是内容上的继承,近似于在子类中声明了父类的成员变量。 (1)写法:class student : public person 派生类(子类),继承方式&…...
使用GPT-4和ChatGPT构建应用项目
文章目录 项目1:构建新闻稿生成器项目2:YouTube视频摘要项目3:打造《塞尔达传说:旷野之息》专家项目4:语音控制项目1:构建新闻稿生成器 GPT-4和ChatGPT等LLM专用于生成文本。我们可以使用GPT-4和ChatGPT在各种场景中生成文本,举例如下。 电子邮件合同或正式文档创意写作…...
mobx学习笔记
mobx介绍 mobx是一个功能强大,上手容易的状态管理工具。MobX背后的哲学很简单:任何源自应用状态的东西都应该自动地获得。利用getter和setter来收集组件的数据依赖关系,从而在数据发生变化的时候精确知道哪些组件需要重绘。 mobx和redux的区别 mobx更…...
深入理解 Cowboy WebSocket:使用 Erlang/OTP 构建高效的即时通讯(IM)应用
深入理解 Cowboy WebSocket:使用 Erlang/OTP 构建高效的即时通讯(IM)应用 引言 实时通信技术在现代 Web 应用中扮演着核心角色,而 WebSocket 作为其中的关键技术,已成为即时通讯(IM)系统不可或缺的一部分。Cowboy,这个基于 Erla…...
算法的几种常见形式
算法(Algorithm) 算法(Algorithm)是指解决问题或完成任务的一系列明确的步骤或规则。在计算机科学中,算法是程序的核心部分,它定义了如何执行特定的任务或解决特定的问题。算法可以用多种方式来表示和实现…...
SpringBoot新手快速入门系列教程二:MySql5.7.44的免安装版本下载和配置,以及简单的Mysql生存指令指南。
我的教程都是亲自测试可行才发布的,如果有任何问题欢迎留言或者来群里我每天都会解答。 我们要如何选择MySql 目前主流的Mysql有5.0、8.0、9.0 主要区别 MySQL 5.0 发布年份:2005年特性: 基础事务支持存储过程、触发器、视图基础存储引擎…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
