当前位置: 首页 > news >正文

线性代数|机器学习-P23梯度下降

文章目录

  • 1. 梯度下降[线搜索方法]
    • 1.1 线搜索方法,运用一阶导数信息
    • 1.2 经典牛顿方法,运用二阶导数信息
  • 2. hessian矩阵和凸函数
    • 2.1 实对称矩阵函数求导
    • 2.2. 线性函数求导
  • 3. 无约束条件下的最值问题
  • 4. 正则化
    • 4.1 定义
    • 4.2 性质
  • 5. 回溯线性搜索法

1. 梯度下降[线搜索方法]

我们之前经常用到的梯度下降,

1.1 线搜索方法,运用一阶导数信息

  • 迭代公式:
    x k + 1 = x k − s k ∇ f ( x k ) \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k) \end{equation} xk+1=xkskf(xk)
  • 步长: s k s_k sk,也叫学习率
  • 方向: − ∇ f ( x k ) -\nabla f(x_k) f(xk)负梯度方向

1.2 经典牛顿方法,运用二阶导数信息

详细推导请点击链接

  • 迭代公式:
    x k + 1 = x k − [ H j k ] − 1 ∇ f ( x ) \begin{equation} x_{k+1}=x_k-[H_{jk}]^{-1}\nabla f(x) \end{equation} xk+1=xk[Hjk]1f(x)
  • 步长: s k = 1 s_k=1 sk=1,把步长和方向结合起来放到方向里面去了。
  • 方向: hessian matrix 可逆时 [ H j k ] − 1 ∇ f ( x ) [H_{jk}]^{-1}\nabla f(x) [Hjk]1f(x)

2. hessian矩阵和凸函数

  • 如果hessian matrix H j k H_{jk} Hjk是半正定矩阵[positive semi-definite]或正定矩阵[positive definite]可得为函数是一般凸函数
  • 如果hessian matrix H j k H_{jk} Hjk是正定矩阵[positive definite]可得为函数是强凸函数

2.1 实对称矩阵函数求导

假设我们有一个实对称矩阵S和二次型函数表示如下:
S = [ 1 0 0 b ] , f ( x ) = 1 2 x T S x = 1 2 ( x 2 + b y 2 ) \begin{equation} S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix},f(x)=\frac{1}{2}x^TSx=\frac{1}{2}(x^2+by^2) \end{equation} S= 100b ,f(x)=21xTSx=21(x2+by2)

  • 矩阵S的特征值,条件数 κ ( S ) \kappa(S) κ(S)分别表示如下,假设 b < 1 b<1 b<1
    λ max ⁡ = 1 , λ min ⁡ = b , κ ( S ) = 1 b \begin{equation} \lambda_{\max}=1,\lambda_{\min}=b,\kappa(S)=\frac{1}{b} \end{equation} λmax=1,λmin=b,κ(S)=b1
  • 通过 f ( x ) f(x) f(x)函数可以明显看出最小值点为(0,0)
    arg min ⁡ x ∗ = 0 f ( x ) = 0 \begin{equation} \argmin \limits_{x^*=0}f(x)=0 \end{equation} x=0argminf(x)=0
  • 函数一阶导数如下:
    d f ( x , y ) d X = d 1 2 X T S X d X = S X = [ 1 0 0 b ] [ x y ] = [ x b y ] \begin{equation} \frac{\mathrm{d}f(x,y)}{\mathrm{d}X}=\frac{\mathrm{d}\frac{1}{2}X^TSX}{\mathrm{d}X}=SX=\begin{bmatrix}1&0\\\\0&b\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=\begin{bmatrix}x\\\\by\end{bmatrix} \end{equation} dXdf(x,y)=dXd21XTSX=SX= 100b xy = xby
  • 函数二阶导数如下:
    d 2 f ( x , y ) d X 2 = S = [ 1 0 0 b ] \begin{equation} \frac{\mathrm{d}^2f(x,y)}{\mathrm{d}X^2}=S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix} \end{equation} dX2d2f(x,y)=S= 100b

2.2. 线性函数求导

假设我们有如下函数:
f ( x , y ) = 2 x + 5 y = [ 2 5 ] [ x y ] = A T X , A = [ 2 5 ] \begin{equation} f(x,y)=2x+5y=\begin{bmatrix}2&5\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=A^TX,A=\begin{bmatrix}2\\\\5\end{bmatrix} \end{equation} f(x,y)=2x+5y=[25] xy =ATX,A= 25

  • 函数的一次导数如下:
    d f ( x , y ) d X = d A T X d X = A = [ 2 5 ] \begin{equation} \frac{\mathrm{d}f(x,y)}{\mathrm{d}X}=\frac{\mathrm{d}A^TX}{\mathrm{d}X}=A=\begin{bmatrix}2\\\\5\end{bmatrix} \end{equation} dXdf(x,y)=dXdATX=A= 25
  • 函数的二阶偏导 hessian matrix 如下:[向量对向量求导,XY拉伸术]
    H j k = [ 0 0 0 0 ] \begin{equation} H_{jk}=\begin{bmatrix}0&0\\\\0&0\end{bmatrix} \end{equation} Hjk= 0000
  • 对于函数 f ( x ) = 2 x + 5 y f(x)=2x+5y f(x)=2x+5y来说,依据线搜索方法,其负梯度方向为最佳迭代方向。

3. 无约束条件下的最值问题

假设我们有一个函数表示如下:
f ( x ) = 1 2 x T S x − a T x − b \begin{equation} f(x)=\frac{1}{2}x^TSx-a^Tx-b \end{equation} f(x)=21xTSxaTxb

  • f ( x ) f(x) f(x)导数如下:
    d f ( x ) d x = S x − a ; d 2 f ( x ) d x 2 = H j k = S \begin{equation} \frac{\mathrm{d}f(x)}{\mathrm{d}x}=Sx-a;\frac{\mathrm{d}^2f(x)}{\mathrm{d}x^2}=H_{jk}=S \end{equation} dxdf(x)=Sxa;dx2d2f(x)=Hjk=S
  • 函数 f ( x ) f(x) f(x)的最小值满足其一次导数为零,即表示如下:
    f ′ ( x ∗ ) = 0 , S x ∗ − a = 0 → x ∗ = S − 1 a \begin{equation} f'(x^*)=0,Sx^*-a=0\rightarrow x^*=S^{-1}a \end{equation} f(x)=0,Sxa=0x=S1a
  • 整理可得:
    f min ⁡ ( x ) = min ⁡ x = x ∗ = S − 1 a f ( x ) = − 1 2 a T S − 1 a − b \begin{equation} f_{\min}(x)=\min\limits_{x=x^*=S^{-1}a}f(x)=-\frac{1}{2}a^TS^{-1}a-b \end{equation} fmin(x)=x=x=S1aminf(x)=21aTS1ab
    arg min ⁡ x = x ∗ f ( x ) = S − 1 a \begin{equation} \argmin\limits_{x=x^*}f(x)=S^{-1}a \end{equation} x=xargminf(x)=S1a

4. 正则化

4.1 定义

  • Log-determinant regularization
    Log-determinant regularization 通过在损失函数中加入一个负对数行列式项来约束矩阵X的结构。具体形式为
    P e n a l t y = − log ⁡ ( det ⁡ ( X ) ) \begin{equation} Penalty=-\log(\det(X)) \end{equation} Penalty=log(det(X))
  • 其中X通常是一个正定矩阵, 这一正则化项有利于确保X的特征值远离零,从而避免数值不稳定性和病态矩阵的出现

4.2 性质

  • 凸性: − log ⁡ ( det ⁡ ( X ) ) -\log(\det(X)) log(det(X))是一个凸函数,这意味着优化问题中,局部最小值也是全局最小值
  • 梯度: ∇ f ( x ) = − X − 1 \nabla f(x)=-X^{-1} f(x)=X1
    f ( x ) = − log ⁡ ( det ⁡ ( X ) ) → d f ( x ) d x = 1 det ⁡ ( X ) ⋅ [ det ⁡ ( X ) ⋅ ( X − 1 ) T ] = X − 1 \begin{equation} f(x)=-\log(\det(X))\rightarrow \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\frac{1}{\det(X)}\cdot [\det(X)\cdot (X^{-1})^T]=X^{-1} \end{equation} f(x)=log(det(X))dxdf(x)=det(X)1[det(X)(X1)T]=X1
  • hessian matrix
    H j k = X − 1 H X − 1 , H 是一个对称矩阵 \begin{equation} H_{jk}=X^{-1}HX^{-1},H是一个对称矩阵 \end{equation} Hjk=X1HX1H是一个对称矩阵

5. 回溯线性搜索法

对于线搜索方法来说,迭代公式如下,但是对于步长的选择来说,我们如果选择步长 s k s_k sk太大,那么就很容易越过极值点,在极值点不断跳跃和震荡,如果步长 s k s_k sk太小,那么迭代太慢,没有效果

  • 迭代公式:
    x k + 1 = x k − s k ∇ f ( x k ) \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k) \end{equation} xk+1=xkskf(xk)
  • 步长: s k s_k sk
  • 方向: 负梯度方向 − ∇ f ( x k ) -\nabla f(x_k) f(xk)

那么我们希望找到一个步长 s k s_k sk使得在搜索方向上使得 f ( x k + 1 ) f(x_{k+1}) f(xk+1)最小,这样就不是固定步长了,相当于动态步长
s k ∗ = arg min ⁡ s k f ( x k + 1 ) \begin{equation} s_k^*= \argmin\limits_{s_k} f(x_{k+1}) \end{equation} sk=skargminf(xk+1)

  • 步骤:先固定步长 s k = s 0 s_k=s_0 sk=s0,再取半步长 s k = 1 2 s 0 s_k=\frac{1}{2}s_0 sk=21s0,再取半步长 s k = 1 4 s 0 s_k=\frac{1}{4}s_0 sk=41s0,
  • 假设我们有如下一个损失函数如下:
    S = [ 1 0 0 b ] , f ( x ) = x T S x = x 2 + b y 2 \begin{equation} S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix},f(x)=x^TSx=x^2+by^2 \end{equation} S= 100b ,f(x)=xTSx=x2+by2
  • 迭代公式如下:
    x k + 1 = x k − s k ∇ f ( x k ) , ∇ f ( x k ) = 2 S x \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k),\nabla f(x_k)=2Sx \end{equation} xk+1=xkskf(xk),f(xk)=2Sx
  • 向量化如下 : x = [ x , y ] T x\;=[x\;,y\;]^T x=[x,y]T
    [ x y ] k + 1 = [ x y ] k − s k [ 2 x 2 b y ] k \begin{equation} \begin{bmatrix}x\\\\y\end{bmatrix}_{k+1}=\begin{bmatrix}x\\\\y\end{bmatrix}_{k}-s_k\begin{bmatrix}2x\\\\2by\end{bmatrix}_{k} \end{equation} xy k+1= xy ksk 2x2by k
  • 假设我们定义初始点 p 0 = ( x 0 , y 0 ) = ( b , 1 ) p_0=(x_0,y_0)=(b,1) p0=(x0,y0)=(b,1)
  • 步长 s k = 1 x 0 + y 0 = 1 b + 1 s_k=\frac{1}{x_0+y_0}=\frac{1}{b+1} sk=x0+y01=b+11这里没弄懂,后续再研究,反推出来的
    x k = b ( b − 1 b + 1 ) k , y k = ( 1 − b 1 + b ) k , f k = ( 1 − b 1 + b ) k f 0 \begin{equation} x_k=b(\frac{b-1}{b+1})^k,y_k=(\frac{1-b}{1+b})^k,f_k=(\frac{1-b}{1+b})^kf_0 \end{equation} xk=b(b+1b1)k,yk=(1+b1b)k,fk=(1+b1b)kf0
  • 函数 f ( x ) = x 2 + b y 2 = c f(x)=x^2+by^2=c f(x)=x2+by2=c是一个椭圆形图像,随着c的变化不断变化,也就是做函数的最小值是之字型不断地趋近于最小,就像不同的椭圆进行等比缩小,最终求得最小值。
    在这里插入图片描述

相关文章:

线性代数|机器学习-P23梯度下降

文章目录 1. 梯度下降[线搜索方法]1.1 线搜索方法&#xff0c;运用一阶导数信息1.2 经典牛顿方法&#xff0c;运用二阶导数信息 2. hessian矩阵和凸函数2.1 实对称矩阵函数求导2.2. 线性函数求导 3. 无约束条件下的最值问题4. 正则化4.1 定义4.2 性质 5. 回溯线性搜索法 1. 梯度…...

SQL,python,knime将数据混合的文字数字拆出来,合并计算实战

将下面将数据混合的文字数字拆出来&#xff0c;合并计算 一、SQL解决&#xff1a; ---创建表插入数据 CREATE TABLE original_data (id INT AUTO_INCREMENT PRIMARY KEY,city VARCHAR(255),value DECIMAL(10, 2) );INSERT INTO original_data (city, value) VALUES (上海0.5…...

mac ssh连接工具

在Mac上&#xff0c;有多个SSH连接工具可供选择&#xff0c;这些工具根据其功能和适用场景的不同&#xff0c;可以满足不同用户的需求。以下是一些推荐的SSH客户端软件&#xff1a;12 iTerm2&#xff1a;这是一款功能强大的终端应用程序&#xff0c;提供了丰富的功能和定制选项…...

阿里通义音频生成大模型 FunAudioLLM 开源

简介 近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术的进步极大地改变了人类与机器的互动方式&#xff0c;特别是在语音处理领域。阿里巴巴通义实验室最近开源了一个名为FunAudioLLM的语音大模型项目&#xff0c;旨在促进人类与大型语言模型&#xff08;LLMs&…...

通用详情页的打造

背景介绍 大家都知道&#xff0c;详情页承载了站内的核心流量。它的量级到底有多大呢&#xff1f; 我们来看一下&#xff0c;日均播放次数数亿次&#xff0c;这么大的流量&#xff0c;其重要程度可想而知。 在这样一个页面&#xff0c;每一个功能都是大量业务的汇总点。 作为…...

java内部类的本质

定义在类内部&#xff0c;可以实现对外部完全隐藏&#xff0c;可以有更好的封装性&#xff0c;代码实现上也往往更为简洁。 内部类可以方便地访问外部类的私有变量&#xff0c;可以声明为private从而实现对外完全隐藏。 在Java中&#xff0c;根据定义的位置和方式不同&#xf…...

vue3 学习笔记08 -- computed 和 watch

vue3 学习笔记08 – computed 和 watch computed computed 是 Vue 3 中用于创建计算属性的重要 API&#xff0c;它能够根据其它响应式数据动态计算出一个新的值&#xff0c;并确保在依赖数据变化时自动更新。 基本用法 squaredCount 是一个计算属性&#xff0c;它依赖于 count…...

Python-PLAXIS自动化建模技术与典型岩土工程案例

有限单元法在岩土工程问题中应用非常广泛&#xff0c;很多软件都采用有限单元解法。在使用各大软件进行数值模拟建模的过程中&#xff0c;岩土工程中的各种问题&#xff08;塑性、渗流、固结、动力、稳定安全、热力TM&#xff09;&#xff0c;一步一步地搭建自己的Plaxis模型&a…...

license系统模型设计使用django models

User (用户)License (许可证)Product (产品)LicenseAssignment (许可证分配) 简单的模型定义&#xff1a; from django.db import models from django.contrib.auth.models import Userclass Product(models.Model):name models.CharField(max_length255)description model…...

【通信协议-RTCM】MSM语句(1) - 多信号GNSS观测数据消息格式

注释&#xff1a; RTCM响应消息1020为GLONASS星历信息&#xff0c;暂不介绍&#xff0c;前公司暂未研发RTCM消息类型版本的DR/RTK模块&#xff0c;DR/RTK模块仅NMEA消息类型使用 注释&#xff1a; 公司使用的多信号语句类型为MSM4&MSM7&#xff0c;也应该是运用最广泛的语句…...

vue3-vite-pinia模板

模板说明 下载 git clone https://github.com/AIxiaoHanBao/vue-template.gitmodule参数 node版本 16 UI组件库 element-plus 持久化 pinia 网络请求 axios 路由 vue-router 使用说明 权限管理目录access资源目录assets组件目录components页面目录pages网络请求目录re…...

华为HCIP Datacom H12-821 卷38

1.多选题 下面关于 BGP中的公认属性的描述&#xff0c;正确的是 A、公认必遵属性是所有BGP路由器都识别&#xff0c;且必须存在于Updata消息中心 B、BGP必须识别所有公认属性 C、公认属性分为公认必遵和可选过渡两种 D、公认任意属性是所有BGP造由器都可以识别&#xff0c…...

C语言求10进制转2进制(除2取余法)

1.思路&#xff1a;除2取余法&#xff0c;也就是说用除以2取余来将10进制数转换为二进制 2.两种代码实现&#xff0c;这里用了两&#xff0c;一个递归一个非递归。 递归是一种编程技术&#xff0c;其中一个函数直接或间接地调用自己。递归通常用于解决那些可以被分解为更小的、…...

PHP 调用淘宝详情 API 接口的方法与实践

以下是关于“PHP 调用淘宝详情 API 接口的方法与实践”的一篇文章示例&#xff1a; PHP 调用淘宝详情 API 接口的方法与实践 在当今的电商时代&#xff0c;获取淘宝商品的详情信息对于许多开发者来说是一项重要的任务。使用 PHP 语言来调用淘宝详情 API 接口&#xff0c;可以…...

风景区服务热线系统:智能化时代的旅游新选择

一、引言 1 、风景区服务热线系统的概念 风景区服务热线系统是指为游客提供实时旅游信息咨询、投诉处理、紧急救援等一系列服务的电话和网络平台。它不仅是景区与游客之间的重要沟通桥梁&#xff0c;也是提升游客满意度、优化景区管理的重要手段。 2 、智能化时代对旅游服务…...

Linux修改配置文件后无法使用命令或无法进入桌面

如果你是修改了配置文件&#xff0c;如 sudo vim /etc/profile重启无数次发现无法进入桌面&#xff0c;不要着急重装系统&#xff01;&#xff01;&#xff0c;怎么造成的怎么改就行了 以下方案需要root密码&#xff0c;忘记密码详见&#xff1a;Linux忘记root密码怎么办 一…...

安卓14中Zygote初始化流程及源码分析

文章目录 日志抓取结合日志与源码分析systemServer zygote创建时序图一般应用 zygote 创建时序图向 zygote socket 发送数据时序图 本文首发地址 https://h89.cn/archives/298.html 最新更新地址 https://gitee.com/chenjim/chenjimblog 本文主要结合日志和代码看安卓 14 中 Zy…...

等保一体机 | 什么是等保一体机?一台机器就能过等保吗?

什么是等保一体机&#xff1f; 对于中小型企业来说&#xff0c;他们在接触到等保的条件下&#xff0c;可能会觉得成本太高了&#xff0c;毕竟整改的时候&#xff0c;几台安全设备下来报价就几十w。 也许有些人会听说过等保一体机 那么什么是等保一体机呢&#xff1f; 等保一…...

【活动预告】Apache IoTDB TsFile 智慧能源应用“上会”啦!

2024 年&#xff0c;站在中国数字经济产业升级和数据要素市场化建设的时代交汇点上&#xff0c;为进一步推动全球数据库产业进步&#xff0c;由中国通信标准化协会、大数据技术标准推进委员会主办的“2024 可信数据库发展大会”将于 2024 年 7 月 16-17 日&#xff0c;在北京朝…...

【公益案例展】中国电信安全大模型——锻造安全行业能量转化的高性能引擎...

‍ 电信安全公益案例 本项目案例由电信安全投递并参与数据猿与上海大数据联盟联合推出的 #榜样的力量# 《2024中国数智产业最具社会责任感企业》榜单/奖项评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 以GPT系列为代表的大模型技术&#xff0c;展现了人工智能技术与应…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

如何把工业通信协议转换成http websocket

1.现状 工业通信协议多数工作在边缘设备上&#xff0c;比如&#xff1a;PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发&#xff0c;当设备上用的是modbus从站时&#xff0c;采集设备数据需要开发modbus主站&#xff1b;当设备上用的是西门子PN协议时&#xf…...

ZYNQ学习记录FPGA(二)Verilog语言

一、Verilog简介 1.1 HDL&#xff08;Hardware Description language&#xff09; 在解释HDL之前&#xff0c;先来了解一下数字系统设计的流程&#xff1a;逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端&#xff0c;在这个过程中就需要用到HDL&#xff0c;正文…...