LeetCode HOT100(四)字串
和为 K 的子数组(mid)
给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。
子数组是数组中元素的连续非空序列。
输入:nums = [1,1,1], k = 2
输出:2
解法1:前缀和+Map
这是一道经典的前缀和运用题。
统计以每一个 nums[i] 为结尾,和为 k 的子数组数量即是答案。
我们可以预处理前缀和数组 prefix,对于求解以某一个 nums[i] 为结尾的,和为 k 的子数组数量,本质上是求解在 [0,i] 中,prefix 数组中有多少个值为 prefix[i]−k 的数,这可以在遍历过程中使用「哈希表」进行同步记录。
是以当前节点为结尾的计算,不是以当前节点为起始的计算!!!
public int subarraySum(int[] nums, int k) {int len = nums.length;int[] prefix = new int[len];prefix[0] = nums[0];for (int i=1; i<len; i++){prefix[i] = prefix[i-1]+nums[i];}Map<Integer,Integer> map = new HashMap<>();//当子串的起始节点为0,即取前缀和的整段而不做截断//需要插入一个长度为0的子串map.put(0,1);int res = 0;for(int i=0; i<len; i++){res += map.getOrDefault(prefix[i]-k,0);map.put(prefix[i],map.getOrDefault(prefix[i],0)+1);}return res;
}
滑动窗口最大值(hard)
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
解法1:滑动窗口,最优
假设我们当前处理到某个长度为 k 的窗口,此时窗口往后滑动一格,会导致后一个数(新窗口的右端点)添加进来,同时会导致前一个数(旧窗口的左端点)移出窗口。
随着窗口的不断平移,该过程会一直发生。若同一时刻存在两个数 nums[j] 和 nums[i](j<i)所在一个窗口内,下标更大的数会被更晚移出窗口,此时如果有 nums[j]<=nums[i] 的话,可以完全确定 nums[j] 将不会成为后续任何一个窗口的最大值,此时可以将必然不会是答案的 nums[j] 从候选中进行移除。
不难发现,当我们将所有必然不可能作为答案的元素(即所有满足的小于等于 nums[i] )移除后,候选集合满足「单调递减」特性,即集合首位元素为当前窗口中的最大值(为了满足窗口长度为 k 的要求,在从集合头部取答案时需要先将下标小于的等于的 i−k 的元素移除)。
为方便从尾部添加元素,从头部获取答案,我们可使用「双端队列」存储所有候选元素。
用一个容器,充当窗口,保持它存储的元素是单调非递增,这样它的第一个元素就是容器中的最大值,最后一个就是最小值,根据前面的分析,向右滑动过程中,如果遇到了更大的元素,就可以把在容器中小于它的元素都移除掉,因为后加入的更大的元素才可能成为容器中的最大值。因为第一个元素是最大值,我们需要能够获取它,所以,这是一个先入先出的容器,这里用队列就可以了。它的思路与单调栈一样,但只不过用队列来当容器,这便是“单调队列”了。
public int[] maxSlidingWindow(int[] nums, int k) {Deque<Integer> stack = new ArrayDeque<>();int[] res = new int[nums.length-k+1];for(int i=0; i<nums.length; i++){// 队列中的下标是小于新加入的i,那么如果[i]>= 队尾// 说明队尾肯定不会是窗口里的一个最大值了// 从队尾开始,把小于[i]的都移除掉。// 这样就能保证队列的值是一个单调非递减队列了while(!stack.isEmpty() && nums[stack.peekLast()]<nums[i]){stack.pollLast();}stack.addLast(i);if(i>=k-1){// 现在的队首就是窗口中的最大值res[i-k+1] = nums[stack.peekFirst()];// 再把左滑出窗口的最大值从队列中移除,因为它已被滑出窗口了if(stack.peekFirst()+k-1 == i) stack.pollFirst();}}return res;
}
解法2:优先队列
public int[] maxSlidingWindow(int[] nums, int k) {// 使用优先队列(大顶堆)来存储窗口中的索引,以便快速找到最大值PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> nums[b] - nums[a]);// 初始化结果数组,长度为 nums 数组长度减去窗口大小 k 再加 1int[] res = new int[nums.length - k + 1];for (int i = 0; i < nums.length; i++) {// 将当前索引 i 加入优先队列pq.add(i);// 当索引 i 大于 k-1 时,说明窗口已经滑动了至少 k 次,可以开始记录最大值if (i >= k - 1) {// 记录窗口内的最大值,即优先队列中索引对应的值res[i - k + 1] = nums[pq.peek()];// 清除出窗口的元素,即索引小于 i-k+1 的元素while (!pq.isEmpty() && pq.peek() <= i - k + 1) {pq.poll();}}}// 返回结果数组,包含了每个窗口的最大值return res;
}
最小覆盖字串
给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。
对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。
如果 s 中存在这样的子串,我们保证它是唯一的答案。
输入:s = “ADOBECODEBANC”, t = “ABC”
输出:“BANC”
解释:最小覆盖子串 “BANC” 包含来自字符串 t 的 ‘A’、‘B’ 和 ‘C’。
解法1:滑动窗口
public String minWindow(String s, String t) {// 初始化一个足够大的数组来计数字符,假设字符集大小为70(A-Z的大小写)int[] cnt = new int[70];// 标记是否找到有效子串boolean flag = false;// 遍历字符串 t,对每个字符进行计数,并将对应的数组元素减1for (int i = 0; i < t.length(); i++) {char c = t.charAt(i);cnt[c - 'A']--; // 将字符转换为0-65的整数,便于在数组中索引}// 初始化结果字符串为 s,假设没有找到更小的子串String res = s;// 初始化左右指针int l = 0, r = 0;// 滑动窗口的右边界while (r < s.length()) {// 将 s 的当前字符计数加1cnt[s.charAt(r) - 'A']++;// 当前窗口包含 t 的所有字符时,尝试收缩左边界while (l <= r && check(cnt)) {// 标记已找到有效子串flag = true;// 更新最小窗口String tmp = s.substring(l, r + 1);res = tmp.length() < res.length() ? tmp : res;// 移动左边界,将 l 所指的字符从计数器中减去cnt[s.charAt(l) - 'A']--;l++;}// 扩展右边界,继续寻找可能的最小子串r++;}// 如果找到了有效子串,返回 res,否则返回空字符串return flag ? res : "";
}// 检查数组中的所有计数是否都大于等于0,即 s 的当前窗口是否包含 t 的所有字符
public boolean check(int[] arr) {for (int i = 0; i < arr.length; i++) {if (arr[i] < 0)return false; // 如果有字符计数小于0,则当前窗口不包含 t 的所有字符}return true; // 所有字符计数都非负,说明当前窗口包含 t 的所有字符
}
定义两个长度为 60(足够存下所有字母种类)的数组 c1 和 c2,用于存储字符频率。其中 c1 用于记录字符串 t 中字符的频率,c2 用于记录当前滑动窗口内字符的频率。
设定好字母与频率数组下标的映射关系:小写字母 a-z 对应下标 0-25,大写字母 A-Z 对应下标 26-51。
使用变量 tot 来记录还需要匹配的字符种类数,当 tot = 0 代表当前滑动窗口对应的子串能够实现对 t 的覆盖,即任意字符满足 c2[i]≥c1[i]。
使用双指针 j 和 i 表示滑动窗口的左右边界。从前往后遍历字符串 s,在每个位置上更新字符频率数组 c2。若 c2 中字符的频率达到了 c1 中的字符频率,则将 tot 减 1,表示一个字符已经匹配完成。
每当右边界往后移动一步之后,滑动窗口会增加一个字符。此时我们检查左边界能否右移,同时不会使得 tot 变大。即每次右边界右移后,我们检查左边界 c2[j]>c1[j] 是否满足:
- 若满足:说明当前左边界指向字符并非必须,当前子串 s[j…i] 必然不是最短子串。我们让左边界 j 进行右移,并重复进行左边界 c2[j]>c1[j] 的检查,直到窗口不能再收缩
- 若不满足:说明当前窗口没有任何一个后缀字符串能够实现对 t 的覆盖,我们并不能对窗口实现收缩
每次对窗口移动完成后,我们检查当前 tot 是否为 0(对字符串 t 的覆盖是否完成),若为 0 则尝试用当前窗口对应的字符串 s[j…i] 更新 ans。
class Solution {public String minWindow(String s, String t) {int n = s.length(), tot = 0;int[] c1 = new int[60], c2 = new int[60];for (char x : t.toCharArray()) {if (++c1[getIdx(x)] == 1) tot++;}String ans = "";for (int i = 0, j = 0; i < n; i++) {int idx1 = getIdx(s.charAt(i));if (++c2[idx1] == c1[idx1]) tot--;while (j < i) {int idx2 = getIdx(s.charAt(j));if (c2[idx2] > c1[idx2] && --c2[idx2] >= 0) j++;else break;}if (tot == 0 && (ans.length() == 0 || ans.length() > i - j + 1)) ans = s.substring(j, i + 1);}return ans;}int getIdx(char x) {return x >= 'A' && x <= 'Z' ? x - 'A' + 26 : x - 'a';}
}
相关文章:

LeetCode HOT100(四)字串
和为 K 的子数组(mid) 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 输入:nums [1,1,1], k 2 输出:2 解法1:前缀和Map 这…...
uniapp引入 uview( HBuilder 和 npm 两种安装方式) #按需引入
方式一、HBuilder 安装 uview 1.1. HBuider安装-链接-》》 1.2. 在uni.scss 中引入 import "uni_modules/uview-ui/theme.scss";1.3. main.js 引入(import Vue from ‘vue’ 下面) import uView from "uni_modules/uview-ui"; V…...

使用uni-app和Golang开发影音类小程序
在数字化时代,影音内容已成为人们日常生活中不可或缺的一部分。个人开发者如何快速构建一个功能丰富、性能优越的影音类小程序?本文将介绍如何使用uni-app前端框架和Golang后端语言来实现这一目标。 项目概述 本项目旨在开发一个个人影音类小程序&#…...
基于Go1.19的站点模板爬虫详细介绍
构建一个基于Go1.19的站点模板爬虫是一项有趣且具有挑战性的任务。这个爬虫将能够从网站上提取数据,并按照指定的模板进行格式化。以下是详细的介绍和实现步骤。 1. 准备工作 工具和库: Go 1.19colly:一个强大的Go爬虫库goquery࿱…...
永恒之蓝:一场网络风暴的启示
引言 在网络安全的漫长历史中,“永恒之蓝”(EternalBlue)是一个不可忽视的里程碑事件。它不仅揭示了网络世界的脆弱性,还促使全球范围内对网络安全的重视达到了前所未有的高度。本文将深入探讨“永恒之蓝”漏洞的起源、影响及其对…...

AI绘画:艺术与科技的交融,创新浪潮与无限可能
在科技日新月异的当下,AI 绘画作为人工智能领域的一颗璀璨新星,正以惊人的速度在国内崭露头角,引发了艺术与技术交融的全新变革。随着人工智能技术的飞速发展,AI绘画已成为艺术与科技交融的新宠。2024年,AI绘画行业在国…...
医疗健康信息的安全挑战与隐私保护最佳实践
医疗健康信息的安全挑战 医疗健康信息的安全挑战主要包括数据规模庞大、管理困难、数据类型多样导致的安全风险高、以及法律法规与伦理约束带来的挑战。随着医疗信息化的发展,医疗健康数据呈现出爆炸式的增长,医院信息系统、电子病历、健康管理等产生了海…...
《C++并发编程实战》笔记(一、二)
一、简介 抽象损失:对于实现某个功能时,可以使用高级工具,也可以直接使用底层工具。这两种方式运行的开销差异称为抽象损失。 二、线程管控 2.1 线程的基本控制 1. 创建线程 线程相关的管理函数和类在头文件: #include <…...
【日常bug记录】el-checkbox 绑定对象数组
版本说明 "vue": "2.6.10", "element-ui": "2.13.2", 这个写法很怪异哦,但确实管用。el-checkbox 绑定的 label 是双向绑定的值,也就是选中之后传到表单数据里面的值,一般设置为 id,然后…...

单元测试Mockito笔记
文章目录 单元测试Mockito1. 入门1.1 什么是Mockito1.2 优势1.3 原理 2. 使用2.0 环境准备2.1 Mock1) Mock对象创建2) 配置Mock对象的行为(打桩)3) 验证方法调用4) 参数匹配5) 静态方法 2.2 常用注解1) Mock2) BeforeEach 与 BeforeAfter3) InjectMocks4) Spy5) Captor6) RunWi…...

基于SpringBoot+VueJS+微信小程序技术的图书森林共享小程序设计与实现:7000字论文+源代码参考
博主介绍:硕士研究生,专注于信息化技术领域开发与管理,会使用java、标准c/c等开发语言,以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年,拥有近12年的管理工作经验,拥有较丰富的技术架…...

GitHub连接超时问题 Recv failure: Connection was reset
用手机热点WIF拉取git项目的时候,遇到Recv failure: Connection was reset问题。 解决办法 一、手动开启本地代理 二、在终端(cmd)输入命令 git config --global http.proxy http://127.0.0.1:7890 git config --global https.proxy https:…...
浅谈PostCSS
1. 背景 css的预处理器语言(比如 sass, less, stylus)的扩展性不好,你可以使用它们已有的功能,但如果想做扩展就没那么容易。 sass是很常用的css预处理器语言,在webpack中要使用它,…...
GCN、GIN
# 使用TuDataset 中的PROTEINS数据集。 # 里边有1113个蛋白质图,区分是否为酶,即二分类问题。# 导包 from torch_geometric.datasets import TUDataset from torch_geometric.data import DataLoader import torch import torch.nn as nn import torch.…...
Web控件进阶交互
Web控件进阶交互 测试时常需要模拟键盘或鼠标操作,可以用Python的ActionChains来模拟。ActionChains是Selenium提供的一个子类,用于生成和执行复杂的用户交互操作,允许将一系列操作链接在一起,然后一次性执行。 from selenium im…...

基于SpringBoot的校园疫情防控系统
你好,我是专注于计算机科学与技术的研究者。如果你对我的工作感兴趣或有任何问题,欢迎随时联系我。 开发语言:Java 数据库:MySQL 技术:SpringBoot框架,B/S架构 工具:Eclipse,Mav…...

elasticsearch 查询超10000的解决方案
前言 默认情况下,Elasticsearch集群中每个分片的搜索结果数量限制为10000。这是为了避免潜在的性能问题。 但是我们 在实际工作过程中时常会遇到 需要深度分页,以及查询批量数据更新的情况 问题:当请求form size >10000 时,…...

SpringCloud集成kafka集群
目录 1.引入kafka依赖 2.在yml文件配置配置kafka连接 3.注入KafkaTemplate模版 4.创建kafka消息监听和消费端 5.搭建kafka集群 5.1 下载 kafka Apache KafkaApache Kafka: A Distributed Streaming Platform.https://kafka.apache.org/downloads.html 5.2 在config目录下做…...

Macos 远程登录 Ubuntu22.04 桌面
这里使用的桌面程序为 xfce, 而 gnome 桌面则测试失败。 1,安装 在ubuntu上,安装 vnc server与桌面程序xfce sudo apt install xfce4 xfce4-goodies tightvncserver 2,第一次启动和配置 $ tightvncserver :1 设置密码。 然后修改配置:…...
第十届MathorCup高校数学建模挑战赛-A题:无车承运人平台线路定价问题
目录 摘 要 1 问题重述 1.1 研究背景 1.2 研究问题 2 符号说明与模型假设 2.1 符号说明 2.2 模型假设 3 问题一:模型建立与求解 3.1 问题分析与思路 3.2 模型建立 3.2.1 多因素回归模型 3.3 模型求解 3.3.1 数据预处理 3.3.2 重要度计算 4 问题二:模型建立与求…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...