当前位置: 首页 > news >正文

C++——二叉搜索树的实现

1、二叉搜索树的概念

二叉搜索树又叫做二叉排序树,他或者是一棵空树,或者具有以下性质:

若他的左子树不为空,则左子树的所有节点的值都小于根节点的值,

若他的右子树不为空,则右子树的所有节点的值都大于根节点的值,

他的左右子树也分别为二叉搜索树;

2、二叉搜索树的操作

  int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

1.二叉搜索树的查找

从根节点开始找,比根大往右边查找,比根小往左边查找,最多查找高度次,走到空还没找到,则该值不存在;

2.二叉搜索树的插入

若树为空,则新增节点,赋值给root指针,

若树不为空,按二叉搜索树查找插入位置,插入新节点

 3.二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回,如果存在,则分为以下四种情况:

a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
其实a情况可以和b c 情况合并起来,这样我们只需要考虑三种删除方式:
情况b: 删除该节点,并使该节点的父亲节点指向删除节点的左节点
情况c:删除该节点,并使该节点的父亲节点指向删除节点的右节点
情况d:替换法,找到该节点右子树的最小节点或者左子树的最大节点,与该节点替换,然后删除右子树的最小节点或左子树的最大节点;

4.二叉搜索树的实现

#pragma once#include<iostream>
#include<string>
using namespace std;
namespace key
{template<class K>struct BSTreeNode{BSTreeNode<K>* _left;BSTreeNode<K>* _right;K _key;BSTreeNode(const K& key):_left(nullptr),_right(nullptr),_key(key){ }};template<class K>class BSTree{typedef BSTreeNode<K> Node;public:bool Insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}bool Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if(cur->_key>key){cur = cur->_left;}else{cout << "true" << endl;return true;}}cout << "false" << endl;return false;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{//删除//左为空,父亲指向我的右if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right=cur->_right;}}delete cur;}//右为空,父亲指向我的左else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{//左右都不为空,替换法//查找右子树的最小节点或左子树的最大节点//我们这里找右子树的最小节点(也就是最左节点)Node* rightMinParent = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinParent = rightMin;rightMin = rightMin->_left;}swap(cur->_key, rightMin->_key);if (rightMinParent->_left == rightMin){rightMinParent->_left = rightMin->_right;}else{rightMinParent->_right = rightMin->_right;}delete rightMin;}return true;}}return false;}void InOrder(){_InOrder(_root);cout << endl;}private:void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}Node* _root = nullptr;};void TestBSTree1(){BSTree<int> b;b.Insert(1);b.Insert(2);b.Insert(3);b.Insert(4);b.Insert(5);b.Find(6);b.Find(3);b.Find(5);b.InOrder();}void TestBSTree2(){int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };BSTree<int> t1;for (auto e : a){t1.Insert(e);}/*t1.InOrder();t1.Erase(8);t1.InOrder();*/for (auto e : a){t1.Erase(e);t1.InOrder();}}
}namespace key_value
{template<class K,class V>struct BSTreeNode{BSTreeNode<K,V>* _left;BSTreeNode<K,V>* _right;K _key;V _value;BSTreeNode(const K& key,const V& value):_left(nullptr), _right(nullptr), _key(key), _value(value){ }};template<class K,class V>class BSTree{typedef BSTreeNode<K,V> Node;public:bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key,value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key,value);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return cur;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{//删除//左为空,父亲指向我的右if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}//右为空,父亲指向我的左else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{//左右都不为空,替换法//查找右子树的最小节点或左子树的最大节点//我们这里找右子树的最小节点(也就是最左节点)Node* rightMinParent = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinParent = rightMin;rightMin = rightMin->_left;}swap(cur->_key, rightMin->_key);if (rightMinParent->_left == rightMin){rightMinParent->_left = rightMin->_right;}else{rightMinParent->_right = rightMin->_right;}delete rightMin;}return true;}}return false;}void InOrder(){_InOrder(_root);cout << endl;}private:void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << ":" << root->_value << " ";_InOrder(root->_right);}Node* _root = nullptr;};void TestBSTree3(){BSTree<string, string> dict;dict.Insert("string", "字符串");dict.Insert("left", "左边");dict.Insert("insert", "插入");string str;while (cin >> str){BSTreeNode<string, string>* ret = dict.Find(str);if (ret){cout << ret->_value << endl;}else{cout << "无此单词,请重新输入" << endl;}}}void TestBSTree4(){// 统计次数string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜","苹果", "香蕉", "苹果", "香蕉","苹果","草莓", "苹果","草莓" };BSTree<string, int> countTree;for (const auto& str : arr){auto ret = countTree.Find(str);if (ret == nullptr){countTree.Insert(str, 1);}else{ret->_value++;}}countTree.InOrder();}}

5、二叉搜索树的应用

1.K模型:K模型只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值;

比如:给一个单词word,判断该单词是否拼写正确,

2.K-V模型:每一个关键码都对应一个Value,即<Key,value>的键值对,

比如:英汉字典中用英文与中文的对应关系,通过英文可以快速找到对应的中文,

6、二叉搜索树的性能分析

对于有n个节点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是高度次,但对于同一个关键码集合,如果插入的次序不同,可能得到不同结构的二叉树:

 

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(logN)
最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为O(N);

 

相关文章:

C++——二叉搜索树的实现

1、二叉搜索树的概念 二叉搜索树又叫做二叉排序树&#xff0c;他或者是一棵空树&#xff0c;或者具有以下性质&#xff1a; 若他的左子树不为空&#xff0c;则左子树的所有节点的值都小于根节点的值&#xff0c; 若他的右子树不为空&#xff0c;则右子树的所有节点的值都大于…...

【AppScan】安装教程 AppScan v10 Web应用安全测试工具(附安装包)零基础入门到精通,收藏这一篇就够了

获取方式及安装教程下滑至文章底部查看 此软件“仅限学习交流,不能用于商业用途”&#xff0c;如用于商业用途,请到官方购买正版软件,追究法律责任与本平台无关&#xff01; 配置要求 操作系统&#xff1a;64位 Win10、Win8、Win7 软件介绍 IBM AppScan是一款非常好用…...

Java项目:基于SSM框架实现的中小型企业财务管理系统【ssm+B/S架构+源码+数据库+答辩PPT+开题报告+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的中小型企业财务管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单…...

c++ - 多态

文章目录 一、多态的概念二、多态使用三、多态的原理 一、多态的概念 1、概念&#xff1a; 多态就是具有多种形态&#xff0c;可以理解为同一个行为不同对象去完成表现出不同的状态&#xff0c;如&#xff1a; 二、多态使用 1、构成多态的条件 &#xff08;1&#xff09;派…...

亚马逊云科技EC2简明教程

&#x1f4a1; 完全适用于新手操作的Amazon EC2引导教程 简述 在亚马逊云科技中&#xff0c;存在多种计算服务&#xff0c;在此&#xff0c;我们将会着重讨论Amazon EC2(以下简称EC2)&#xff0c;EC2作为亚马逊云科技的明星产品、核心产品&#xff0c;是大多数开发者和企业用…...

TCP网络传输控制协议

目录 什么是TCP TCP的特点 TCP通信步骤 三次握手&#xff08;建立连接&#xff09; 数据传输 四次挥手&#xff08;连接释放&#xff09; 为什么要进行三次握手&#xff1f;两次握手行不行&#xff1f;一次握手行不行&#xff1f; 为什么是四次挥手&#xff1f;三次、两…...

PCDN技术如何应对网络带宽限制?(壹)

PCDN技术应对网络带宽限制的操作主要包括以下几个方面&#xff1a; 利用边缘计算资源&#xff1a;PCDN是以P2PCDN技术为基础&#xff0c;通过挖掘利用边缘网络海量碎片化闲置资源来构建内容分发网络。这意味着&#xff0c;当网络带宽受限时&#xff0c;PCDN能够更有效地利用这…...

Java数据结构-链表与LinkedList

链表 链表的概念 链表是一种物理存储结构上非连续的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的引用链接次序实现的。 通俗来说&#xff0c;相比较于顺序表&#xff08;物理上连续&#xff0c;逻辑上也连续&#xff09;&#xff0c;链表物理上不一定连续。 链表是…...

单元测试实施最佳方案(背景、实施、覆盖率统计)

1. 什么是单元测试&#xff1f; 对于很多开发人员来说&#xff0c;单元测试一定不陌生 单元测试是白盒测试的一种形式&#xff0c;它的目标是测试软件的最小单元——函数、方法或类。单元测试的主要目的是验证代码的正确性&#xff0c;以确保每个单元按照预期执行。单元测试通…...

mysql笔记(表导出文件,文件导入表)

遇见权限问题1: cat /etc/my.cnf加入[mysqld] secure_file_priv ""遇见目录错误2:因为 MySQL 服务器没有权限在根目录下创建文件。你可以尝试将文件导出到一个 MySQL 服务器有权限写入的目录下&#xff0c;例如 MySQL 数据目录或 /tmp目录。sudo chmod 755 /path/to…...

Navicat 17 新特性 | 原生支持 Linux ARM 平台以及银河麒麟和统信操作系统

随着 Navicat 17 的发布&#xff0c;引起了业界的广泛共鸣与热烈讨论。此前&#xff0c;我们深入探讨了Navicat 17的多项新特性&#xff0c;涵盖《模型设计&#xff1a;引领创新&#xff0c;优化升级》&#xff0c;《高效的查询与配置》以及《用户界面交互&#xff1a;流畅体验…...

【pytorch】手写数字识别

https://blog.csdn.net/qq_45588019/article/details/120935828 基本均参考该博客 《深度学习原理Pytorch实战》 初步处理 导包 import torch import numpy as np from matplotlib import pyplot as plt from torch.utils.data import DataLoader from torchvision import tr…...

SpringBoot3.3.0升级方案

本文介绍了由SpringBoot2升级到SpringBoot3.3.0升级方案&#xff0c;新版本的升级可以解决旧版本存在的部分漏洞问题。 一、jdk17下载安装 1、下载 官网下载地址 Java Archive Downloads - Java SE 17 Jdk17下载后&#xff0c;可不设置系统变量java_home&#xff0c;仅在id…...

用 Kotlin 编写四则运算计算器:从零开始的简单教程

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…...

java算法day13

java算法day13 104 二叉树的最大深度111 二叉树的最小深度226 翻转二叉树101 对称二叉树100 相同的树 104 二叉树的最大深度 我最开始想到的是用层序遍历。处理每一层然后计数。思路非常的清楚。 迭代法&#xff1a; /*** Definition for a binary tree node.* public class…...

方便快捷传文件—搭建rsync文件传输服务器

比如我们有一个服务器&#xff0c;想把各个机器的文件都通过脚本传给这台机&#xff0c;用sftp或者直接rsync就必须输密码&#xff0c;肯定不行&#xff0c;做等效性免密又麻烦&#xff0c;怎么办呢&#xff0c;这么办&#xff01; 在服务端 yum -y install rsync #编辑&…...

python调用qt编写的dll

报错&#xff1a;FileNotFoundError: Could not find module F:\pythonProject\MINGW\sgp4Lib.dll (or one of its dependencies). Try using the full path with constructor syntax. 只有两种情况&#xff1a; 1.路径不对 2.库的依赖不全 1、如果是使用了qt库的&#xff0…...

SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测

SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测 目录 SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现NGO-CNN-LSTM-Mutilhead-Attention北方苍鹰算…...

【Redis】初识 Redis

文章目录 1 什么是 Redis2 Redis 的特点2.1 速度快2.2 可编程性2.3 可拓展性2.4 持久化2.5 主从复制2.5 高可用和分布式2.6 客户端语言多 3 Redis 使用场景3.1 实时数据存储3.2 缓存和 Session 存储3.3 消息队列 4 Redis 重大版本5 CentOS7 安装 Redis5 1 什么是 Redis Redis …...

【PTA天梯赛】L1-003 个位数统计(15分)

作者&#xff1a;指针不指南吗 专栏&#xff1a;算法刷题 &#x1f43e;或许会很慢&#xff0c;但是不可以停下来&#x1f43e; 文章目录 题目题解总结 题目 题目链接 题解 使用string把长度达1000位的数字存起来开一个代表个位数的数组 a[11]倒序计算最后一位&#xff0c;…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...