2024辽宁省数学建模B题【钢铁产品质量优化】思路详解
2024 辽宁省大学数学建模竞赛试题
B 题 钢铁产品质量优化
由于连续退火工序中各阶段的工艺参数之间存在耦合性(加热炉的温度设定会影响后续均热与冷却温度的设定,以及带钢穿行速度),导致难以建立该工序的机理模型,从而为在线的产品质量控制与优化带来挑战。为了实现对连退带钢产品质量的优化,从实际生产中获得了许多带钢产品的生产过程工艺参数和对应的带钢机械性能数据,其中:带钢规格数据包括厚度、宽度、碳含量、硅含量,控制工艺参数包括带钢速度、加热炉温度、均热炉温度、缓冷炉温度、过时效炉温度、快冷炉温度、淬火温度、平整机张力,性能指标为带钢的硬度。附件 1给出了某一批带钢产品的规格数据、工艺参数与性能指标数据,请根据这些数据或自行收集的数据完成以下任务:
1. 请帮助现场操作人员确定哪些参数对于带钢的机械性能具有重要影响?
1.确定哪些参数对于带钢的机械性能具有重要影响:
o 思路:
i. 数据预处理:读取并清洗数据,包括处理缺失值、异常值等。
ii. 特征选择:使用统计分析方法(如相关性分析、方差分析)或机器学习方法(如递归特征消除、Lasso回归)来确定对带钢机械性能(硬度)有显著影响的工艺参数。
iii. 可视化分析:通过散点图、热力图等手段进行数据可视化,辅助理解参数之间的关系。
精力有限,以下只是简略的图文版初步思路,更详细的视频版完整讲解请移步:
2024辽宁省数学建模竞赛选题建议及ABC题详细思路!_哔哩哔哩_bilibili
目前第一问求解结果:

2. 请帮助现场操作人员建立一个数据驱动的带钢产品质量在线检测模型,并分析该模型的性能;
2.建立带钢产品质量在线检测模型,并分析模型的性能:
o 思路:
i. 数据分割:将数据集分为训练集和测试集。
ii. 模型选择:选择合适的回归模型,如线性回归、决策树回归、随机森林回归或神经网络等。
iii. 模型训练与调参:使用训练集训练模型,并通过交叉验证进行参数调优。
iv. 模型评估:在测试集上评估模型性能,计算均方误差(MSE)、决定系数(R²)等指标。
v. 模型解释:分析模型的特征重要性,解释模型如何根据工艺参数预测带钢的硬度。
3. 现场操作人员通常是根据个人经验对带钢产品的工艺参数进行设定,你能否帮助他们建立一个带钢工艺参数优化的解决方案?
3.建立带钢工艺参数优化的解决方案:
o 思路:
i. 优化目标:设定优化目标,如最大化带钢硬度、最小化硬度波动等。
ii. 约束条件:考虑工艺参数的物理和实际约束,如温度范围、速度限制等。
iii. 优化方法:使用优化算法(如遗传算法、粒子群优化、模拟退火)在满足约束条件的前提下找到最优工艺参数组合。
iv. 仿真验证:通过仿真或实际生产数据验证优化方案的有效性。
OK,上述思路的文档领取、视频讲解以及后续的完整成品论文预定请点击我的下方个人卡片查看↓:
相关文章:
2024辽宁省数学建模B题【钢铁产品质量优化】思路详解
2024 辽宁省大学数学建模竞赛试题 B 题 钢铁产品质量优化 由于连续退火工序中各阶段的工艺参数之间存在耦合性(加热炉的温度设定会影响后续均热与冷却温度的设定,以及带钢穿行速度),导致难以建立该工序的机理模型,从而…...
C++基础入门(上)
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 C基础入门(上) 收录于专栏【C语法基础】 本专栏旨在分享学习C的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. C发展历史 2. C版本…...
基于深度学习的情感分析
基于深度学习的情感分析是一种利用深度学习技术从文本数据中提取情感信息,判断文本的情感倾向(如正面、负面或中性)的方法。这项技术在市场营销、客户服务、社交媒体分析、产品评价和政治分析等领域有广泛应用。以下是对这一领域的系统介绍&a…...
mybatis 延迟加载
MyBatis的延迟加载(Lazy Loading)是一种优化技术,用于在需要时才加载关联对象或集合,从而提高性能和效率。以下是对MyBatis延迟加载的详细介绍: 延迟加载的基本概念 延迟加载是指在第一次访问对象的属性时才加载该对象…...
使用QT5.14.2开发族谱管理软件过程记录
目标缘由:出生在农村、学习了电脑技术,总有一个想法就是将老家传承下来的族谱录入电脑中,方便快速查询和长期保存。开始入手时候发现还挺有难度。 难点如下: 过去族谱纸质版书籍是民国时候印刷的、很多字都是繁体字、还有好些字…...
【QT】布局管理器
布局管理器 布局管理器1. 垂直布局2. 水平布局3. 网格布局4. 表单布局5. Spacer 布局管理器 之前使⽤ Qt 在界⾯上创建的控件, 都是通过 “绝对定位” 的⽅式来设定的;也就是每个控件所在的位置, 都需要计算坐标, 最终通过 setGeometry 或者 move ⽅式摆放过去。 …...
兼容问题---ios底部的安全距离css设置
在H5上适配安全区域:采用viewportenvconstant方案。 具体操作如下: 1. 需要将viewport设置为cover,env和constant才能生效。设置代码如下: <meta name"viewport" content"widthdevice-width,initial-scale1.…...
python JSON Lines (JSONL)的保存和读取;jsonl的数据保存和读取,大模型prompt文件保存常用格式
1. JSON Lines (JSONL)文件保存 将一个包含多个字典的列表保存为 JSON Lines (JSONL) 格式的文件,每个字典对应一个 JSONL 文件中的一行。以下是如何实现这一操作的 Python 代码 import json# 定义包含字典的列表 data [{"id": 1, "name": &qu…...
Spring Boot中@Async注解的使用及原理 + 常见问题及解决方案
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...
ubuntu基于cmakelist的Qt工程,如何将图片打包进二进制程序
qt界面使用的图片打包进入二进制可执行程序,可以避免发布的软件,因为路径问题无法加载图片的问题。 以下步骤参考自百度AI. 步骤如下: 1.创建一个新的Qt资源文件(.qrc文件) 2.在*.qrc文件中添加图片路径 qrc文件使用…...
Spring的启动流程refresh方法、配置类解析流程@Component、@Configuration、@Import、@Bean
Spring的启动流程概述: 核心方法: refresh方法,作用就是实例化spring容器中的所有单例。 3步: 生成BeanFactory容器(有beanDefinition类信息和bean对象实例)生成BeanDefinition类信息生成bean对象实例 需…...
运算放大器(2)
(1)反向放大器 Vout(-R2/R1)*Vi 图一运放的同向端接地0V,反向端和同向端虚短,所以也是0V 反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个…...
智能优化算法之模拟退火算法SA
发展历史和算法思想 模拟退火算法(Simulated Annealing, SA)是一种基于热力学原理的随机优化算法,最早由 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 于 1983 年提出。算法的灵感来自于固体物理学中的退火过程:通过加热和缓慢…...
同时用到,网页,java程序,数据库的web小应用
具体实现功能:通过网页传输添加用户的请求,需要通过JDBC来向 MySql 添加一个用户数据 第一步,部署所有需要用到的工具 IDEA(2021.1),Tomcat(9),谷歌浏览器,MySql,jdk(17) 第二步,创建java项目,提前部署数…...
星环科技推出语料开发工具TCS,重塑语料管理与应用新纪元
5月30-31日,2024向星力未来数据技术峰会期间,星环科技推出一款创新的语料开发工具——星环语料开发工具TCS(Transwarp Corpus Studio),旨在通过全面的语料生命周期管理,极大提升语料开发效率,助…...
【ARM】MDK安装ARM_compiler5无法打开安装程序
【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 在客户安装了最新版本的MDK5.37及后续更新版本,但原工程使用ARM_Compiler_5.06进行编译和调试,需安装ARM_Compiler_5.06的编译器版本,但在解压缩的过程中后续无法打开ARM_Compiler…...
PHP文字ocr识别接口示例、人工智能的发展
全球在人工智能升级的大背景下,有一定规模的制造商开始大量部署人工智能机器人、系统,以此取代危险、简单和重复性的工作。各种人工智能技术的迅猛发展,正在驱动各行业就业市场发现变革。 京东物流大家并不陌生,京东快递机器人在…...
【2024 全国青少年信息素养大赛复赛指南】算法创意实践挑战赛复赛、智能算法应用挑战赛复赛指南
目录 2024 全国青少年信息素养大赛算法创意实践挑战赛复赛指南 一、比赛内容 二、编程题作答说明 三、准备说明 四、进入复赛 五、设备检测 六、答题与交卷 全国青少年信息素养大赛智能算法应用挑战赛复赛指南 一、 比赛规则: 二、学生具体操作流程 三、 评判方法…...
构建自定义Tensorflow镜像时用到的链接地址整理
NVIDIA相关: NVIDIA CUDA镜像的docker hub:https://hub.docker.com/r/nvidia/cuda/tags?page&page_size&ordering&name12.4.1NVIDIA 构建的Tensorflow镜像包:https://docs.nvidia.com/deeplearning/frameworks/tensorflow-rele…...
C++——二叉搜索树的实现
1、二叉搜索树的概念 二叉搜索树又叫做二叉排序树,他或者是一棵空树,或者具有以下性质: 若他的左子树不为空,则左子树的所有节点的值都小于根节点的值, 若他的右子树不为空,则右子树的所有节点的值都大于…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
