当前位置: 首页 > news >正文

【机器学习】逻辑回归的原理、应用与扩展

文章目录

    • 一、逻辑回归概述
    • 二、Sigmoid函数与损失函数
      • 2.1 Sigmoid函数
      • 2.2 损失函数
    • 三、多分类逻辑回归与优化方法
      • 3.1 多分类逻辑回归
      • 3.2 优化方法
    • 四、特征离散化

一、逻辑回归概述

逻辑回归是一种常用于分类问题的算法。大家熟悉的线性回归一般形式为 Y = a X + b \mathbf{Y} = \mathbf{aX} + \mathbf{b} Y=aX+b,其输出范围是 [ − ∞ , + ∞ ] [-∞, +∞] [,+]。然而,对于分类问题,我们需要将输出结果映射到一个有限的区间,这样才能实现分类。

这时候,我们可以借助一个非线性变换函数,即 Sigmoid 函数。Sigmoid 函数的定义为:
S ( Y ) = 1 1 + e − Y \mathbf{S(Y)} = \frac{1}{1 + e^{-\mathbf{Y}}} S(Y)=1+eY1
该函数可以将任意实数映射到 [ 0 , 1 ] [0, 1] [0,1] 区间内。我们可以将线性回归模型的输出 Y \mathbf{Y} Y 带入 Sigmoid 函数,得到一个介于 [ 0 , 1 ] [0, 1] [0,1] 之间的值 S \mathbf{S} S,这个值可以解释为一个概率。

在实际应用中,我们通常将 S \mathbf{S} S 视为样本属于正类的概率。如果我们设定一个概率阈值,比如 0.5 0.5 0.5,当 S \mathbf{S} S 大于 0.5 0.5 0.5 时,我们认为样本属于正类;反之,当 S \mathbf{S} S 小于 0.5 0.5 0.5 时,我们认为样本属于负类。通过这种方式,逻辑回归模型就能够对样本进行分类。

总的来说,逻辑回归通过线性回归模型输出结果并应用 Sigmoid 函数,将连续值映射为概率,从而实现对分类问题的处理。这种方法不仅简单有效,而且在二分类问题中具有广泛的应用。

二、Sigmoid函数与损失函数

2.1 Sigmoid函数

Sigmoid 函数是一种常用于分类模型中的激活函数,其定义上一小节有写。通常,分类问题有两种结果:一种是“是”,另一种是“否”。我们可以将 0 0 0 对应于“否”, 1 1 1 对应于“是”。

在这里插入图片描述

既然输出是 [ 0 , 1 ] [0, 1] [0,1] 的连续区间,为什么结果只有 0 0 0 1 1 1?这里我们引入一个阈值(通常设为 0.5 0.5 0.5)。当输出的概率大于 0.5 0.5 0.5 时,我们将其归为正类(即 1 1 1 类);当输出的概率小于 0.5 0.5 0.5 时,我们将其归为负类(即 0 0 0 类)。当然,这个阈值可以根据具体问题的需要自行设定。

接下来,我们将线性模型 a X + b \mathbf{aX + b} aX+b 代入 Sigmoid 函数中,就得到了逻辑回归的一般模型方程:
H ( a , b ) = 1 1 + e − ( a X + b ) \mathbf{H(a, b)} = \frac{1}{1 + e^{-(\mathbf{aX + b})}} H(a,b)=1+e(aX+b)1
其中, H ( a , b ) \mathbf{H(a, b)} H(a,b) 表示样本属于正类的概率。当该概率大于 0.5 0.5 0.5 时,我们将其判定为正类;当该概率小于 0.5 0.5 0.5 时,我们将其判定为负类。这样,逻辑回归通过将线性回归模型的输出映射到 [ 0 , 1 ] [0, 1] [0,1] 区间,从而实现分类的目的。

2.2 损失函数

逻辑回归的损失函数称为对数损失函数(log loss),也被称为对数似然损失函数(log-likelihood loss)。其具体形式如下:
Cost ( h θ ( x ) , y ) = { − log ⁡ ( h θ ( x ) ) if  y = 1 − log ⁡ ( 1 − h θ ( x ) ) if  y = 0 \text{Cost}(\mathbf{h_{\theta}(x)}, y) = \begin{cases} -\log(\mathbf{h_{\theta}(x)}) & \text{if } y = 1 \\ -\log(1 - \mathbf{h_{\theta}(x)}) & \text{if } y = 0 \end{cases} Cost(hθ(x),y)={log(hθ(x))log(1hθ(x))if y=1if y=0
在这个公式中, y = 1 y = 1 y=1 时使用第一个表达式,而 y = 0 y = 0 y=0 时使用第二个表达式。这是因为我们希望当模型预测接近真实值时,损失较小;反之,预测偏离真实值时,损失较大。

引入对数函数的原因在于其独特的性质:当真实值为 1 1 1 而模型预测概率 h \mathbf{h} h 接近 0 0 0 时, − log ⁡ ( h ) -\log(\mathbf{h}) log(h) 会趋向于无穷大,表示极大的惩罚。同样地,当真实值为 0 0 0 而模型预测概率 h \mathbf{h} h 接近 1 1 1 时, − log ⁡ ( 1 − h ) -\log(1 - \mathbf{h}) log(1h) 也会趋向于无穷大。因此,对数函数能够有效地对错误的预测进行严厉的惩罚,而对准确的预测则几乎没有惩罚。

通过使用梯度下降等优化算法,我们可以最小化损失函数,找到使损失函数达到最小值的参数,从而训练出最佳的逻辑回归模型。

三、多分类逻辑回归与优化方法

3.1 多分类逻辑回归

逻辑回归可以通过一种称为“一对多”(one-vs-rest)的策略来处理多分类问题。具体步骤如下:

  1. 首先,将某个类别视为正类,而将其他所有类别视为负类,然后训练一个逻辑回归模型来计算样本属于该类别的概率 p 1 \mathbf{p1} p1
  2. 接下来,将另一个类别(如 class2)视为正类,而将其他所有类别视为负类,训练另一个逻辑回归模型来计算样本属于该类别的概率 p 2 \mathbf{p2} p2
  3. 重复上述过程,对每一个类别都进行类似处理,计算样本属于每个类别的概率 p i \mathbf{p_i} pi

最终,我们将所有类别的概率进行比较,选择概率最大的那个类别作为最终预测结果。

通过这种方法,我们可以将多分类问题转化为多个二分类问题,并通过选择概率最大的类别来完成多分类任务。

3.2 优化方法

逻辑回归的优化方法包括一阶方法和二阶方法:

  • 一阶方法
    • 梯度下降:通过计算损失函数的梯度,并根据梯度更新参数。梯度下降的速度较慢,但简单易用。
    • 随机梯度下降(SGD):每次迭代只使用一个样本更新参数,速度更快,适用于大规模数据。
    • Mini-batch随机梯度下降:对数据进行小批量处理,结合了全量梯度下降和SGD的优点,提高计算效率。
  • 二阶方法
    • 牛顿法:通过二阶泰勒展开来更新参数,收敛速度较快,但计算Hessian矩阵的复杂度较高,且可能无法保证函数值稳定下降。
    • 拟牛顿法:不直接计算Hessian矩阵,而是构造其近似矩阵。常用的拟牛顿法包括DFP法(逼近Hessian的逆)、BFGS法(直接逼近Hessian矩阵)、L-BFGS法(减少存储空间需求)。

四、特征离散化

在逻辑回归中,特征离散化可以带来以下好处:

  1. 引入非线性:将连续特征离散化后,可以捕捉到非线性特征,提高模型的表达能力。
  2. 计算速度快:稀疏向量的内积运算速度较快,计算结果也便于存储和扩展。
  3. 鲁棒性强:离散化后的特征对异常数据具有较强的鲁棒性,减少了异常值对模型的影响。
  4. 特征组合:离散化后可以进行特征交叉,增加模型的复杂度和表达能力。
  5. 模型稳定性:离散化后,模型对特征的微小变化更为稳定,避免了极端值对模型的干扰。
  6. 简化模型:特征离散化有助于简化模型,降低过拟合的风险。

参考:

  • Logistics Regression
  • Sigmoid函数

在这里插入图片描述

相关文章:

【机器学习】逻辑回归的原理、应用与扩展

文章目录 一、逻辑回归概述二、Sigmoid函数与损失函数2.1 Sigmoid函数2.2 损失函数 三、多分类逻辑回归与优化方法3.1 多分类逻辑回归3.2 优化方法 四、特征离散化 一、逻辑回归概述 逻辑回归是一种常用于分类问题的算法。大家熟悉的线性回归一般形式为 Y a X b \mathbf{Y}…...

Ubuntu22.04系统装好后左上角下划线闪烁不开机(N卡)

折腾了半天以为是ubuntu的系统和硬件不匹配, 最后发现的确有点关系, 就是显卡驱动的问题 解决办法: 1. 进入到safty模式下, 然后配好网络环境 2. 移除所有的驱动相关的包, sudo apt-get remove --purge nvidia* 3.…...

Leetcode刷题4--- 寻找两个正序数组的中位数 Python

目录 题目及分析方法一:直接合并后排序方法二:二分查找法 题目及分析 (力扣序号4:[寻找两个正序数组的中位数](https://leetcode.cn/problems/median-of-two-sorted-arrays/description/) 给定两个大小分别为 m 和 n …...

springBoot(若依)集成camunda

1、下图为项目结构 2、最外层 pom引入依赖 <properties><!--camunda 标明版本&#xff0c;注意要个自己的Spring 版本匹配&#xff0c;匹配关系自行查询官网--><camunda.version>7.18.0</camunda.version> </properties> 3、common模块引入依赖 …...

【微信小程序知识点】自定义构建npm

在实际开发中&#xff0c;随着项目的功能越来越多&#xff0c;项目越来越复杂&#xff0c;文件目录也变得很繁琐&#xff0c;为了方便进行项目的开发&#xff0c;开发人员通常会对目录结构进行优化调整&#xff0c;例如&#xff1a;将小程序源码放到miniprogram目录下。 &…...

JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断 目录 JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断分类效果格拉姆矩阵图GAF-PCNN-MATTGASF-CNNGADF-CNN 基本介绍程序设计参考资料 分…...

新手教学系列——高效管理MongoDB数据:批量插入与更新的实战技巧

前言 在日常开发中,MongoDB作为一种灵活高效的NoSQL数据库,深受开发者喜爱。然而,如何高效地进行数据的批量插入和更新,却常常让人头疼。今天,我们将一起探讨如何使用MongoDB的bulk_write方法,简化我们的数据管理流程,让代码更加简洁高效。 常规做法:find、insertone…...

C# Winform 自定义事件实战

在C#的WinForms中&#xff0c;自定义事件是一种强大的工具&#xff0c;它允许你创建自己的事件&#xff0c;从而在特定条件下通知订阅者。自定义事件通常用于封装业务逻辑&#xff0c;使代码更加模块化和易于维护。下面我将通过一个实战例子来展示如何在WinForms中创建和使用自…...

Python通过继承实现多线程

本套课在线学习视频&#xff08;网盘地址&#xff0c;保存到网盘即可免费观看&#xff09;&#xff1a; ​​https://pan.quark.cn/s/677661ea63b3​​ 本节将介绍如何利用Python中的thread模块和threading模块实现多线程&#xff0c;并通过继承threading.Thread类并重写run方…...

记一次项目经历

一、项目需求 1、设备四个工位&#xff0c;每个工位需要测试产品的电参数&#xff1b; 2、每个另外加四个位置温度&#xff1b; 3、显示4个通道电流曲线&#xff0c;16个通道温度曲线&#xff1b; 4、可切换工艺参数&#xff1b; 5、常规判定&#xff0c;测试数据保存到表格内&…...

Elasticsearch 8 支持别名查询

在 Elasticsearch 8 中&#xff0c;使用 Java 高级 REST 客户端进行别名管理的过程与之前的版本类似&#xff0c;但有一些API细节上的变化。以下是如何使用 Java 和 Elasticsearch 8 进行别名操作的例子&#xff1a; 引入依赖 确保你的项目中包含了 Elasticsearch 的高级 RES…...

【Spring Cloud】 使用Eureka实现服务注册与服务发现

文章目录 &#x1f343;前言&#x1f38d;解决方案&#x1f6a9;关于注册中⼼&#x1f6a9;CAP理论&#x1f6a9;常见的注册中心 &#x1f384;Eureka&#x1f6a9;搭建 Eureka Server&#x1f388;创建Eureka-server ⼦模块&#x1f388;引入依赖&#x1f388;项目构建插件&am…...

JDK安装详细教程(以JDK17为例)

一、JDK的下载 1. 前往oracle官网下载JDK Java Archive Downloads - Java SE 17 在这里选择对应的JDK版本&#xff0c;我这里就直接选择JDK17的版本了。 然后下载对应的软件包&#xff0c;我这里采用的是Windows的安装程序。 点击上述圈起来的链接即可下载安装包&#xff0c;…...

安装nodejs | npm报错

nodejs安装步骤: 官网&#xff1a;https://nodejs.org/en/ 在官网下载nodejs: 双击下载下来的msi安装包&#xff0c;一直点next&#xff0c;我选的安装目录是默认的: 测试是否安装成功&#xff1a; 输入cmd打开命令提示符&#xff0c;输入node -v可以看到版本&#xff0c;说…...

聊点基础---Java和.NET开发技术异同全方位分析

1. C#语言基础 1.1 C#语法概览 欢迎来到C#的世界&#xff01;对于刚从Java转过来的开发者来说&#xff0c;你会发现C#和Java有很多相似之处&#xff0c;但C#也有其独特的魅力和强大之处。让我们一起来探索C#的基本语法&#xff0c;并比较一下与Java的异同。 程序结构 C#程序…...

【C++】C++中SDKDDKVer.h和WinSDKVer.h函数库详解

目录 一.SDKDDKVer.h介绍 二.WinSDKVer.h介绍 三.WinSDKVer.h 和 SDKDDKVer.h 的区别 一.SDKDDKVer.h介绍 SDKDDKVer.h 是一个在 Windows 软件开发中常见的头文件&#xff0c;它用于定义软件开发工具包&#xff08;SDK&#xff09;和驱动开发工具包&#xff08;DDK&…...

uni-app 蓝牙传输

https://www.cnblogs.com/ckfuture/p/16450418.html https://www.cnblogs.com/yangxiaobai123/p/16021058.html 字符串转base64&#xff1a;https://www.cnblogs.com/sunny3158/p/17312158.html 将 ArrayBuffer 对象转成 Base64 字符串&#xff1a;基础 - uni.arrayBufferT…...

MBR10200CT-ASEMI智能AI应用MBR10200CT

编辑&#xff1a;ll MBR10200CT-ASEMI智能AI应用MBR10200CT 型号&#xff1a;MBR10200CT 品牌&#xff1a;ASEMI 封装&#xff1a;TO-220 批号&#xff1a;最新 恢复时间&#xff1a;35ns 最大平均正向电流&#xff08;IF&#xff09;&#xff1a;10A 最大循环峰值反向…...

力扣 爬楼梯

动态规划算法基础篇。 class Solution {public int climbStairs(int n) {int[] f new int[n 1];f[0] 1;f[1] 1;//当爬到n阶楼梯时&#xff0c;可知是由n-1阶或n-2阶楼梯而来for(int i 2; i < n; i) {f[i] f[i - 1] f[i - 2];//后面的每一阶种数由前两个状态得到}ret…...

java设计模式之:策略模式+工厂模式整合案例实战(一)

本文介绍项目中常用的策略模式工厂模式的案例&#xff0c;该案例是针对策略类比较少的情况&#xff1b;下一篇会讲解策略类比较多的案例&#xff0c;下面直接开始&#xff1a; 案例1&#xff1a;项目中对系统中的客户和销售进行事件通知(短信、邮件、钉钉) 首先要有通知的策略…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...