ETL数据集成丨主流ETL工具(ETLCloud、DataX、Kettle)数据传输性能大PK
目前市面上的ETL工具众多,为了方便广大企业用户在选择ETL工具时有一个更直观性能方面的参考值,我们选取了目前市面上最流行的三款ETL工具(ETLCloud、DataX、Kettle)来作为本次性能传输的代表,虽然性能测试数据有很多相关文章都有评测但是基本上也是各说各话或在不同条件下的对比,缺少一个在公平环境和数据量下的直观对比和一个可性的评测结果, ETLCloud作为国内ETL工具的代表本次我们采用线上直播的方式向广大用户进行了现场的性能评测,评测可以说是在相当公平公正的情况下直播进行的,如果用户想亲自进行评测也可以按照本文后面的配置要求和版本下载后进行对比评测。
本次直播的内容最主要是测试在不同数据量100W-1000W下,MySQL、SQLServer、Postgre SQL之间进行数据传输时ETL的最快传输速度,每种工具均采用最快的5通道进行批量数据插入,所有ETL工具采用公开的社区或开源版本进行对比评测,不针对任何一款ETL工具进行单独的调优,因为很多用户在下载后也是直接使用很少会进行高级别参数的调优,所以在这种情况下更能代表这款ETL工具真实使用场景时的传输性能。
本次评测的结果ETLCloud相对于kettle快了24.16%的性能,相对于DataX快了27.8%的性能,同时在不同数据量下ETLCloud和Kettle表现更为稳定,而DataX在不同的数据量下波动范围更多,数据量越大时DataX的性能有逐步提升的趋势。
对于评测结果来说ETLCloud的性能之所以相对于其他ETL工具性要快最主要取决于ETLCloud研发团队不断对工具底层引擎和算法调优的结果,我们经过大量的项目PK和大数据量的考验对底层的数据读取和写入以及中间过程的序列化均进行了长时间的不断优化和测试,同时ETLCloud很好的在性能和功能方面取得了比较好的平衡策略,有些ETL工具虽然性能更快但是功能很弱只适用于某一种场景,而像Kettle虽然功能很强但在性能方面受制于项目的体积逐步降低了性能。ETLCloud在性能和功能方面都取得了非常好的成绩,这也是我们一直追求极致产品的结果。
以下是针对不同数据量下的传输性能评测的汇总数据:


直播评测实验中,参与测试的工具均安装于windows Server2019数据中心版操作系统的阿里云服务器,服务器配置8内核,32G内存以及100G数据盘,公网宽带5M,各个工具均配置相同的内存参数,有些ETL工具由于不支持Windows操作系统的安装没有纳入本次评测范围。
测试过程使用3款主流ETL工具测试2种不同的数据集成场景下,3种不同数据量传输的情况,包括数据库的查询、写入和存储。为了保证测试数据的真实性和公平性,所有测试流程都采用相同的配置和传输模式,同时为避免因目标数据库被重复清空和写入带来的性能影响,相同数据量下所有工具依次进行测试。
通过测评结果看出,ETLCloud在每个场景下测评速度居于首位,从平均值来看,ETLCloud平均比kettle快24.16%,比DataX快27.8%,可以说,ETLCloud是国内大数据量下传输速度最快的数据集成工具。
具体的测评实验过程,请点击下方链接观看:
主流ETL工具(ETLCloud、DataX、Kettle)数据传输性能大PK
相关文章:
ETL数据集成丨主流ETL工具(ETLCloud、DataX、Kettle)数据传输性能大PK
目前市面上的ETL工具众多,为了方便广大企业用户在选择ETL工具时有一个更直观性能方面的参考值,我们选取了目前市面上最流行的三款ETL工具(ETLCloud、DataX、Kettle)来作为本次性能传输的代表,虽然性能测试数据有很多相…...
eNSP:防火墙设置模拟公司配置(二)
实验拓扑: 实验要求(二): 7: 办公设备可以通过电信连接和移动上网(多对多NAT,并且需要保留一个公网IP) 8: 分公司通过公网移动电信,访问DMZ的http服务器 9&a…...
vue3 两个组件之间传值
Props 父组件可以通过 props 将数据传递给子组件。这是最常见的组件间通信方式 <!-- 父组件 --><template><ChildComponent :message"parentMessage" /></template><script>import ChildComponent from ./ChildComponent.vue;export…...
基于matlab的深度学习案例及基础知识专栏前言
专栏简介 内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。 一、 基于matlab的深度学习案例 1.1、matlab:基于模…...
机器学习——L1 L2 范数 —>L1 L2正则化
1、L1范数和L2范数是机器学习和数据分析中经常使用的两种范数,它们之间存在多个方面的区别。 以下是关于L1范数和L2范数区别的详细解释: 一、定义差异 L1范数:也被称为曼哈顿范数,是向量元素的绝对值之和。对于一个n维向量x&am…...
大模型时代,还需要跨端framework吗?
跨端 在我近十年的大前端从业经验中,有一半是在和flutter/rn打交道。虽然,flutter和rn官方和社区已经在非常努力的优化、填坑了,但是这两者的坑还是远远高于原生开发。 但是,在锁表的大周期下,华为带着鸿蒙来了&#…...
ASP.NET Core----基础学习05----将数据传递给视图文件的五种情况
文章目录 1. 类型一:使用ViewData将数据传递给视图文件(默认视图文件)2. 类型二:自定义选择视图文件 并传递ViewData数据3. 类型三:使用ViewBag将数据传递给视图文件4. 类型四:在视图文件中使用model转化为…...
Flutter实现局部刷新的几种方式
目录 前言 1.局部刷新的重要性 1.概念 2.重要性 2.局部刷新实现的几种方式 1.使用setState方法进行局部刷新 2.使用StatefulWidget和InheritedWidget局部刷新UI 3.ValueNotifier和ValueListenableBuilder 4.StreamBuilder 5.Provider 6.GetX 7.使用GlobalKey 前言 …...
力扣题解(回文子串)
647. 回文子串 给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 思路: 首先,本题要求的是数目,而且不要求没…...
对数的基本概念
概念 在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生过另一个固定数字(基数)的指数 如果a的x次方等于N(a > 0, 且a不等于1),那么数x叫做以a为底N的…...
C双指针滑动窗口算法
这也许是双指针技巧的最⾼境界了,如果掌握了此算法,可以解决⼀⼤类⼦字符串匹配的问题 原理 1、我们在字符串 S 中使⽤双指针中的左右指针技巧,初始化 left right 0,把索引闭区间 [left, right] 称为⼀个「窗⼝」。 2、我们先…...
WPF学习(6) -- WPF命令和通知
一 、WPF命令 1.ICommand代码 创建一个文件夹和文件 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Input;namespace 学习.Command {public class MyCommand : ICommand{Acti…...
升级到LVGL9的一些变化(后续发现再补充)
目录 一、主要内容 二、新增内容 三、常规API变化 四、Display API(显示API) 五、其他 最近在将LVGL8的demo代码升级到LVGL9,带来不小的变化 ,收集网上的一些内容,整理如下: 一、主要内容 二、新增内容 三、常规API变化 四、Display API(显示API)...
当在多线程环境中使用 C++进行编程时,怎样确保线程安全以及如何处理线程之间的同步和通信?
在C中确保线程安全性和处理线程之间的同步和通信有多种方法。下面是一些常用的技术和技巧: 互斥锁:使用互斥锁可以确保只有一个线程可以访问共享资源。在访问共享资源之前获取锁,在完成后释放锁。这可以防止多个线程同时访问同一份数据&#…...
博物馆地图导航系统:高精度地图引擎与AR/VR融合,实现博物馆数字化转型
在人民日益追求精神文化的时代下,博物馆作为传承与展示人类文明的璀璨殿堂,其重要性不言而喻。然而,随着博物馆规模的不断扩大和藏品种类的日益丰富,游客在享受知识盛宴的同时,也面临着“迷路”与“错过”的困扰。博物…...
liunx作业笔记1
一、选择题(每小题2分,共20分) 1、下列变量命名为Shell中无效变量名的是( D ) A、v_ar1 B、var1 C、_var D、*var 变量名以字母开头,包含下划线和数字。 2、关于expr命令的使用下列命令中得数不等于…...
大话C语言:第31篇 指针和数组的关系
数组在内存中是连续存放的,其名称代表了数组首元素的首地址,该地址是常量, 也就是一个指向数组首元素的指针。因此,指针和数组有着密切的关系: 可以使用指针来访问和操作数组中的元素。通过指针的算术运算,…...
Mysql-索引应用
目录 索引应用 MySQL有哪些索引? 普通索引和唯一索引有什么区别? 哪个更新性能更好? 、 聚簇索引的主键索引怎么设置? 追问:假如你不设置会怎么样? 我们一般选择什么样的字段来建立索引? 索引越多越好吗? 索引怎么优化? (覆盖索引优化、防止索引失效、…...
Facebook 开源计算机视觉 (CV) 和 增强现实 (AR) 框架 Ocean
Ocean 是一个独立于平台的框架,支持所有主要操作系统,包括 iOS、Android、Quest、macOS、Windows 和 Linux。它旨在彻底改变计算机视觉和混合现实应用程序的开发。 Ocean 主要使用 C 编写,包括计算机视觉、几何、媒体处理、网络和渲染&#x…...
【接口自动化_13课_接口自动化总结】
一、自我介绍 二、项目介绍 自己的职责、项目流程 1)功能测试,怎么设计用例的--测试策略 2)功能测试为什么还有代码实现,能用工具实现,为什么还用代码实现。 基本情况 项目名称:项目类型:项目测试人员…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...
