当前位置: 首页 > news >正文

linux进行redis的安装并使用RDB进行数据迁移

        现在有两台电脑,分别是A,B,现在我要把A电脑上的redis的数据迁移到B电脑上,B电脑上是没有安装redis的

1.找到A电脑的redis的版本

        1.先启动A电脑的redis,一般来说,都是直接在linux的控制台输入:redis-server,就可以启动redis服务了,开启成功之后,再开一个窗口,使用  redis-cli -h 127.0.0.1 就可以连上本机的redis了

       2. 如果 redis-server 启动不了,那就要进入到redis的安装目录,来指定配置文件启动:redis-server redis.conf

 

       3.如果redis的安装目录的安装目录也忘记了,可以使用下面的方法来寻找:


命令:whereis redis-server        find / -name redis-server        find / -name redis.conf
一般来说,是使用:find / -name redis.conf 这个命令


        4.使用 redis-cli -h 127.0.0.1 连上redis之后,使用:redis-server --version 来看当前redis的版本,然后要在B电脑上使用这个版本的redis,要保证两个redis的版本统一,避免产生很多奇奇怪怪的问题,我A电脑的redis版本是 3.0.7 版本
 

        5.你也可以使用 INFO memory 命令来看当前redis的内存使用情况 :
       

可以看到,我这个reids内存使用了差不多330多M

        6.使用 save 命令来产生快照文件,这个快照文件默认会在redis的根目录下,跟redis.conf 文件同级,名称叫:dump.rdb


这个文件就是当前reids的数据文件

2.安装redis

        在第一步可以看到,我要在B电脑上安装3.0.7版本的reids

1.下载reids:

wget http://download.redis.io/releases/redis-3.0.7.tar.gz​​​​​​ 使用这个命令会自动把指定版本的reids下载到当前目录

2.解压:tar xzf redis-3.0.7.tar.gz

3.然后进入解压后的Redis目录:cd redis-3.0.7

4.编译跟安装:makemake install(以此执行这两个命令)

5.然后启动:redis-server redis.conf

6.redis启动之后,新开一个窗口,使用 redis-cli -h 127.0.0.1 来连接上redis,连接成功之后,使用 set a b  来设置一个值,然后用 get a 来获取对应的值,用这两个命令来判断这个reids是否正常工作


7.在判断B电脑的redis可以正常工作之后,就把这个redis给停了先,一定要先停了redis,要不然他有可能会自动生成rdb文件,使用 SHUTDOWN 命令来停止redis的服务,停止了之后,把A电脑生成的rdb文件,放到B电脑的redis的根目录里面,名称一样是叫 dump.rdb,就复制粘贴过来就行了,然后使用 redis-server redis.conf 启动,redis会自动读取目录下的dump.rdb文件并恢复数据,启动成功之后,我们用 SCAN 0 COUNT 10 命令来查看10个key,判断是否有数据恢复

3.注意事项

        1. B电脑的redis在恢复数据的时候,一定要先停redis服务,然后再把rdb文件放到根目录下,如果没有停止redis,就把要恢复的rdb文件放到根目录下,那么正在运行的redis他有可能会自己生成rdb文件,这个文件会覆盖到要恢复的rdb文件。

        2. 如果没有恢复数据成功,需要看下复制的 RDB 文件与 B 电脑上 Redis 配置文件中 dir 指令指定的目录是否匹配,因为在默认情况下,他指定的目录就是redis的根目录,还要看下默认恢复数据的rdb文件名是不是叫dump.rdb

相关文章:

linux进行redis的安装并使用RDB进行数据迁移

现在有两台电脑,分别是A,B,现在我要把A电脑上的redis的数据迁移到B电脑上,B电脑上是没有安装redis的 1.找到A电脑的redis的版本 1.先启动A电脑的redis,一般来说,都是直接在linux的控制台输入:re…...

深入理解Scikit-learn:决策树与随机森林算法详解

用sklearn实现决策树与随机森林 1. 简介 决策树和随机森林是机器学习中的两种强大算法。决策树通过学习数据特征与标签之间的规则来进行预测,而随机森林则是由多棵决策树组成的集成算法,能有效提高模型的稳定性和准确性。 2. 安装sklearn 首先&#…...

AutoHotKey自动热键(十一)下载SciTE4AutoHotkey-Plus的中文增强版脚本编辑器

关于AutoHotkey的专用编辑器, SciTE4AutoHotkey是一个免费的基于 SciTE 的 AutoHotkey 脚本编辑器,除了 DBGp 支持, 它还为 AutoHotkey 提供了语法高亮, 调用提示, 参数信息和自动完成, 以及其他拥有的编辑特性和辅助工具.XDebugClient 是一个基于 .NET Framework 2.0 的简单开…...

Halcon与C++之间的数据转换

HALCON的HTuple类型(元组)功能很强大,可以表示INT、double、string等多种类型数据。当元组中只有一个成员时,HTuple也可表示原子类型 1. haclon -> C //HTuple转int HTuple hTuple 1; int data1 hTuple[0].I(); // data1 1//HTuple转do…...

MybatisPlus 一些技巧

查询简化 SimpleQuery 有工具类 com.baomidou.mybatisplus.extension.toolkit.SimpleQuery 对 selectList 查询后的结果进行了封装,使其可以通过 Stream 流的方式进行处理,从而简化了 API 的调用。 方法 list() 支持对一个列表提取某个字段&#xff…...

定制化服务发现:Eureka中服务实例偏好的高级配置

定制化服务发现:Eureka中服务实例偏好的高级配置 在微服务架构中,服务实例的智能管理和优化是保证系统高效运行的关键。Eureka作为Netflix开源的服务注册与发现框架,提供了丰富的配置选项来满足不同场景下的需求。服务实例偏好配置允许开发者…...

【实战场景】MongoDB迁移的那些事

【实战场景】MongoDB迁移的那些事 开篇词:干货篇【MongoDB迁移的方法】:1. 基于mongodump和mongorestore的迁移一、迁移前准备二、使用mongodump备份数据三、使用mongorestore还原数据四、注意事项 2. 基于MongoDB复制集的迁移一、迁移前准备二、配置新复…...

为什么要使用加密软件?

一、保护数据安全:加密软件通过复杂的加密算法对敏感数据进行加密处理,使得未经授权的人员即使获取了加密数据,也无法轻易解密和获取其中的内容。这极大地提高了数据在存储、传输和使用过程中的安全性。 二、遵守法律法规:在许多国…...

k8s学习笔记——dashboard安装

重装了k8s集群后,重新安装k8s的仪表板,发现与以前安装不一样的地方。主要是镜像下载的问题,由于网络安全以及国外网站封锁的原因,现在很多镜像按照官方提供的仓库地址都下拉不下来,导致安装失败。我查了好几天&#xf…...

AI艺术创作:掌握Midjourney和DALL-E的技巧与策略

AI艺术创作:掌握Midjourney和DALL-E的技巧与策略 AI艺术创作正逐渐成为艺术家和创意工作者们探索新表达方式的重要工具。Midjourney和DALL-E是两款领先的AI绘画工具,它们各有独特的功能和优势。本文将详细介绍如何掌握这两款工具的使用技巧,…...

在Mac上免费恢复误删除的Word文档

Microsoft Word for Mac是一个有用的文字处理应用程序,它与Microsoft Office套件捆绑在一起。该软件的稳定版本包括 Word 2019、2016、2011 等。 Word for Mac 与 Apple Pages 兼容;这允许在不同的操作系统版本中使用Word文档,而不会遇到任何麻烦。 与…...

HarmonyOS 屏幕适配设计

1. armonyOS 屏幕适配设计 1.1. 像素单位 (1)px (Pixels)   px代表屏幕上的像素点,是手机屏幕分辨率的单位,即屏幕物理像素单位。 (2)vp (Viewport Percentage)   vp是视口百分比单位,基于…...

Netfilter之连接跟踪(Connection Tracking)和反向 SNAT(Reverse SNAT)

连接跟踪(Connection Tracking) 连接跟踪是 Netfilter 框架中的一个功能,用于跟踪网络连接的状态和元数据。它使防火墙能够识别和处理数据包属于哪个连接,并在双向通信中正确匹配请求和响应数据包。 工作原理 建立连接&#xf…...

Linux下使用vs code离线安装各种插件

Linux下使用vs code离线安装各种插件 (1)手动下载插件 插件市场 -> 搜索插件名 -> 右边栏 Download Extension (2)寻找安装目录 whereis code一般会出现两个目录,选择右边那个/usr/share/code code: /usr/b…...

【常见开源库的二次开发】基于openssl的加密与解密——Base58比特币钱包地址——算法分析(三)

目录: 目录: 一、base58(58进制) 1.1 什么是base58? 1.2 辗转相除法 1.3 base58输出字节数: 二、源码分析: 2.1源代码: 2.2 算法思路介绍: 2.2.1 Base58编码过程: 2.1.2 Base58解码过…...

Linux操作系统——数据库

数据库 sun solaris gnu 1、分类: 大型 中型 小型 ORACLE MYSQL/MSSQL SQLITE DBII powdb 关系型数据库 2、名词: DB 数据库 select update database DBMS 数据…...

【数据结构与算法】希尔排序:基于插入排序的高效排序算法

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《数据结构与算法》 期待您的关注 ​ 目录 一、引言 二、基本原理 三、实现步骤 四、C语言实现 五、性能分析 1. 时间复杂度…...

关于正点原子的alpha开发板的启动函数(汇编,自己的认识)

我傻逼了,这里的注释还是不要用; 全部换成 /* */ 这里就分为两块,一部分是复位中断部分,第二部分就是IRQ部分(中断部分最重要) 我就围绕着两部分来展开我的认识 首先声明全局 .global_start 在 ARM 架…...

Deep Layer Aggregation【方法部分解读】

摘要: 视觉识别需要跨越从低到高的层次、从小到大的尺度以及从精细到粗略的分辨率的丰富表示。即使卷积网络的特征层次很深,单独的一层信息也不足够:复合和聚合这些表示可以改进对“是什么”和“在哪里”的推断。架构上的努力正在探索网络骨干的许多维度,设计更深或更宽的架…...

大数据面试SQL题-笔记01【运算符、条件查询、语法顺序、表连接】

大数据面试SQL题复习思路一网打尽!(文档见评论区)_哔哩哔哩_bilibiliHive SQL 大厂必考常用窗口函数及相关面试题 大数据面试SQL题-笔记01【运算符、条件查询、语法顺序、表连接】大数据面试SQL题-笔记02【...】 目录 01、力扣网-sql题 1、高频SQL50题&#xff08…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...