数据结构—链式二叉树-C语言
代码位置:test-c-2024: 对C语言习题代码的练习 (gitee.com)
一、前言:
在现实中搜索二叉树为常用的二叉树之一,今天我们就要通过链表来实现搜索二叉树。实现的操作有:建二叉树、前序遍历、中序遍历、后序遍历、求树的节点个数、求树的高度、求k层节点个数、查找节点、层序遍历,判断是否是完全二叉树,二叉树的销毁。
二、代码实现:
2.0-开辟空间函数及结构体:
对于链表我们可以定义一个开辟空间的函数以便于后继的操作。对于结构体成员中我们需要包含节点值data和左右子树节点。
代码如下:
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include "Queue.h"typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;BTNode* BuyNode(BTDataType x) //开辟空间
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc node");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}
2.1-建二叉树:
对于建二叉树我们需要手动搓一个二叉树。
建的树如图所示:
代码如下:
BTNode* CreatTree() //建二叉树
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}
2.2-前序遍历:
二叉树前序遍历规则为:先访问根节点在访问左子树最后访问右子树。我这里是通过函数递归实现的访问。
代码如下:
void PreOrder(BTNode* root) //前序遍历
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}
2.3-中序遍历:
二叉树中序遍历规则为:先访问左子树在访问根节点最后访问右子树。我这里是通过函数递归实现的访问。
代码如下:
void InOrder(BTNode* root) //中序遍历
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}
2.4-后序遍历:
二叉树后序遍历规则为:先访问左子树在访问右子树最后访问根节点。我这里是通过函数递归实现的访问。
代码如下:
void PostOrder(BTNode* root) //后序遍历
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}
2.5-求树的节点个数:
这里是通过三目操作符以及递归来实现的统计节点个数。原理是如果该节点不是空节点则整体个数加1,然后继续访问下一子树,直到遍历完为止。
代码如下:
int TreeSize(BTNode* root) //求节点个数
{return root == NULL ? 0: TreeSize(root->left)+ TreeSize(root->right)+ 1;
}
2.6-求树的高度:
这里是通过leftHeight和rightHeight来存储左右子树高度值,然后在return中通过三目运算符来返回高的那一子树在加1(这里加1是节点本身占一个高度)
代码如下:
int TreeHeight(BTNode* root)
{if (root == NULL)return 0;int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight> rightHeight? leftHeight + 1: rightHeight + 1;
}
2.7-求k层节点个数:
这里是通过递归传k-1是为了找到k层的所有节点若存在则返回1,不存在返回0然后将所有返回值相加返回即是第k层的节点个数。
代码如下:
int TreeLeave(BTNode* root,int k) //求k层节点个数
{assert(k > 0);if (root == NULL){return 0;}if(k==1){return 1;}return TreeLeave(root->left, k - 1) +TreeLeave(root->right, k - 1);
}
2.8-查找节点:
这里是通过递归遍历一遍树查找是否存在查找值若存在则返回该节点,若不存在则返回NULL。(注:这个函数只能查找出该值前序遍历第一次出现的位置)
代码如下:
BTNode* BinaryTreeFind(BTNode* root, BTDataType x) //查找
{if (root == NULL){return 0;}if (root->data == x){return root;}BTNode* p = BinaryTreeFind(root->left, x);if(p)return p;BTNode * q=BinaryTreeFind(root->right, x);if (q )return q;return NULL;
}
2.9-层序遍历:
这里需要用到队列以前的博客里我们实现过队列,所以这里我们可以当个CV工程师将以前的代码复制过来即可。
队列代码:
#pragma once#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>typedef struct BinaryTreeNode* QDataType;
typedef struct QueueNode
{struct QueueNode* next;QDataType data;
}QNode;typedef struct Queue
{QNode* head;QNode* tail;int size;
}Queue;void QueueInit(Queue* pq); //初始化
void QueueDestory(Queue* pq); //释放销毁
void QueuePush(Queue* pq,QDataType x); //入队
void QueuePop(Queue* pq); //出队
int QueueSize(Queue* pq); //元素个数
bool QueueEmpty(Queue* pq); //判断队空
QDataType QueueFront(Queue* pq); //队头数据
QDataType QueueBack(Queue* pq); //队尾数据
#define _CRT_SECURE_NO_WARNINGS 1#include "Queue.h"void QueueInit(Queue* pq) //初始化
{assert(pq);pq->head = pq->tail = NULL;pq->size = 0;
}void QueueDestory(Queue* pq) //释放销毁
{assert(pq);QNode* cur =pq->head;while (cur){pq->head = cur->next;free(cur);cur = NULL;cur = pq->head;}pq->head = pq->tail = NULL;pq->size = 0;
}void QueuePush(Queue* pq, QDataType x) //入队
{QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc");return;}newnode->data = x;newnode->next = NULL;if (pq->head == NULL){assert(pq->tail==NULL);pq->head = pq->tail=newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}void QueuePop(Queue* pq) //出队
{assert(pq);assert(!QueueEmpty(pq));QNode* del = pq->head;pq->head = pq->head->next;free(del);del = NULL;if (pq->head == NULL){pq->tail = NULL;}pq->size--;
}int QueueSize(Queue* pq) //元素个数
{assert(pq);return pq->size;
}bool QueueEmpty(Queue* pq) //判断队空
{assert(pq);return pq->size == 0;
}QDataType QueueFront(Queue* pq) //队头数据
{assert(pq);assert(!QueueEmpty(pq));return pq->head->data;
}QDataType QueueBack(Queue* pq) //队尾数据
{assert(pq);assert(!QueueEmpty(pq));return pq->tail->data;
}
遍历代码如下:
void LevelOrder(BTNode* root) //层序遍历
{Queue p;QueueInit(&p);if(root)QueuePush(&p, root);while (!QueueEmpty(&p)){BTNode* front = QueueFront(&p); //取队列首元素的值QueuePop(&p);printf("%d ", front->data);if (front->left) //入下一层元素{QueuePush(&p, front->left);}if (front->right){QueuePush(&p, front->right);}}QueueDestory(&p);
}
层序遍历代码执行的过程如图所示:
2.10-判断是否是完全二叉树:
判断完全二叉树是通过层序遍历和队列来实现。注意这里的层序遍历遇到空树也需要入队,为了判断二叉树是否为完全二叉树。原理://层序遍历第一次遇到NULL时若后面没有数据节点则是完全二叉树,反之则不是
代码如下:
bool TreeComplete(BTNode* root) //判断是否是完全二叉树
{Queue pq;QueueInit(&pq);QueuePush(&pq, root);while (!QueueEmpty(&pq)){BTNode* front = QueueFront(&pq);if (QueueFront(&pq) == NULL){break;}QueuePop(&pq);QueuePush(&pq, front->left);QueuePush(&pq, front->right);}//层序遍历第一次遇到NULL时若后面没有数据节点则是完全二叉树,反之则不是while (!QueueEmpty(&pq)) {if (QueueFront(&pq) != NULL){QueueDestory(&pq);return false;}QueuePop(&pq);}QueueDestory(&pq);return true;
}
2.11-二叉树的销毁:
二叉树销毁需遍历一遍链表,这里采用后序遍历比较方便,因为另外两个遍历都会因为释放根节点后左右子节点不好释放而产生不必要的麻烦,所以这里最好是使用后序遍历。注意这里只是释放掉了空间,因为这里是一级指针所以这里置空属于局部变量不会影响外部,所以在主函数调用时我们需手动置空。
如图所示:
代码如下:
void TreeDestory(BTNode* root) //销毁二叉树
{if (root == NULL)return;TreeDestory(root->left);TreeDestory(root->right);free(root);
}
三、结语:
递归效果图展示:
最终效果图为:
上述内容,即是我个人对数据结构-链式二叉树-搜索二叉树-C语言的个人见解以及自我实现。若有大佬发现哪里有问题可以私信或评论指教一下我这个小萌新。非常感谢各位友友们的点赞,关注,收藏与支持,我会更加努力的学习编程语言,还望各位多多关照,让我们一起进步吧!
相关文章:

数据结构—链式二叉树-C语言
代码位置:test-c-2024: 对C语言习题代码的练习 (gitee.com) 一、前言: 在现实中搜索二叉树为常用的二叉树之一,今天我们就要通过链表来实现搜索二叉树。实现的操作有:建二叉树、前序遍历、中序遍历、后序遍历、求树的节点个数、求…...
nginx代理gitee
背景 若干台agv设备,这些设备都是没有公网的(无法访问百度等)。 一台服务器(ubuntu20.04)有线可以公网,无线可以实现内部通信(agv,plc等设备)。 目的 agv每一次更新代码,拉取代码等都需要切换到有公网的网络,多台agv设…...

一款IM即时通讯聊天系统源码,包含app和后台源码
一款IM即时通讯聊天系统源码 聊天APP 附APP,后端是基于spring boot开发的。 这是一款独立服务器部署的即时通讯解决方案,可以帮助你快速拥有一套自己的移动社交、 企业办公、多功能业务产品。可以 独立部署!加密通道!牢牢掌握通…...

Camunda如何通过外部任务与其他系统自动交互
文章目录 简介流程图外部系统pom.xmllogback.xml监听类 启动流程实例常见问题Public Key Retrieval is not allowed的解决方法java.lang.reflect.InaccessibleObjectException 流程图xml 简介 前面我们已经介绍了Camunda的基本操作、任务、表: Camunda组件与服务与…...
Django ORM中ExpressionWrapper的用途
ExpressionWrapper 在 Django ORM 中,直接在 filter 方法中进行字段间的比较时,不能直接使用算术运算符(如 、-、*、/)来操作 F 对象,需要使用 ExpressionWrapper 来包装表达式并指定输出字段类型。 使用Q对象&#…...

什么软件修复视频画质比较好,视频画质修复工具
有些视频中可能会出现噪点、残影、颜色失真等问题,导致观看时体验感不太好,修复视频画质可以去除这些问题,使视频更加干净、清晰和真实。 高质量的视频画质能够提高观众的观看体验,让观众更加享受观看视频的过程。特别是在需要展示…...

效能工具:执行 npm start 可直接切换proxy代理UR后直接启动项目
1) 背景: 我们项目是2个前端3个后端的配置。前端和每个后端都有需要调试的接口。 因此经常切换vite.congig.js中的proxy后端代理链接,是挺麻烦的。 于是我研究如何能快速切换后端URL,所幸懒人有懒福,我找到了Inquirer 和 fs, 实…...

MongoDB自学笔记(一)
一、MongoDB简介 MongoDB是一款基于C开发的文档型数据库。与传统的关系型数据库有所不同,MongoDB面向的是文档,所谓的文档是一种名为BSON (Binary JSON:二进制JSON格式)是非关系数据库当中功能最丰富,最像…...

【AIGC】二、mac本地采用GPU启动keras运算
mac本地采用GPU启动keras运算 一、问题背景二、技术背景三、实验验证本机配置安装PlaidML安装plaidml-keras配置默认显卡 运行采用 CPU运算的代码step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考[keras使用基础问题…...
【Qt】使用临时对象的坑
前言 使用临时对象时,一定要注意临时对象析构后是否会对代码造成影响,下面是一些可能出现的错误 std::string Widget::getStr() {return "nihao"; }void Widget::on_pushButton_clicked() {std::string objStr getStr();const char* str g…...

Apache-Flink未授权访问高危漏洞修复
漏洞等级 高危漏洞!!! 一、漏洞描述 攻击者没有获取到登录权限或未授权的情况下,或者不需要输入密码,即可通过直接输入网站控制台主页面地址,或者不允许查看的链接便可进行访问,同时进行操作。 二、修复建议 根据业务/系统具体情况,结合如下建议做出具体选择: 配…...

Unable to obtain driver using Selenium Manager: Selenium Manager failed解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

(01)Unity使用在线AI大模型(使用百度千帆服务)
目录 一、概要 二、环境说明 三、申请百度千帆Key 四、使用千帆大模型 四、给大模型套壳 一、概要 在Unity中使用在线大模型分为两篇发布,此篇文档为在Python中使用千帆大模型,整体实现逻辑是:在Python中接入大模型—>发布为可传参的…...

Zed 编辑器发布了原生 Linux 版本
由 Rust 编写、GPU 加速的 Zed 文本编辑器终于提供了正式的 Linux 原生版本!在过去的几个月里,Zed 的 Linux 支持取得了长足的进步,现在已经进入了更正式的阶段。 今天,这款由前 Atom 开发人员创建的现代开源代码编辑器现在在 Li…...

安全入门day01
一、常用名词 1、前后端 (1)前端 前端主要负责用户界面的展示和交互。它通常包括HTML、CSS和JavaScript等技术的使用,也可能使用各种前端框架和库,如React、Vue.js、Angular等,来构建更加复杂和动态的用户界面。前端…...

基于Adaboost的数据分类算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于Adaboost的数据分类算法matlab仿真,分别对比线性分类和非线性分类两种方式。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 (完整程序…...

基于Java的斗地主游戏案例开发(做牌、洗牌、发牌、看牌
package Game;import java.util.ArrayList; import java.util.Collections;public class PokerGame01 {//牌盒//♥3 ♣3static ArrayList<String> list new ArrayList<>();//静态代码块//特点:随着类的加载而在加载的,而且只执行一次。stat…...

Ubuntu 22.04.4 LTS (linux) 安装certbot 免费ssl证书申请 letsencrypt
1 安装certbot sudo apt update sudo apt-get install certbot 2 申请letsencrypt证书 sudo certbot certonly --webroot -w 网站目录 -d daloradius.域名.com 3 修改nginx 配置ssl 证书 # 配置服务器证书 ssl_certificate /etc/letsencrypt/live/daloradius.域名.com/f…...

MT6825磁编码IC在智能双旋机器人中的应用
MT6825磁编码IC在智能双旋机器人中的应用,无疑为这一领域的创新和发展注入了新的活力。作为一款高性能的磁性位置传感器,MT6825以其独特的优势,在智能双旋机器人的运动控制、定位精度以及系统稳定性等方面发挥了关键作用。 www.abitions.com …...

Datawhale 2024 年 AI 夏令营第二期——基于术语词典干预的机器翻译挑战赛
#AI夏令营 #Datawhale #夏令营 1.赛事简介 目前神经机器翻译技术已经取得了很大的突破,但在特定领域或行业中,由于机器翻译难以保证术语的一致性,导致翻译效果还不够理想。对于术语名词、人名地名等机器翻译不准确的结果,可以通…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...

论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...

篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...