opencv学习:图像视频的读取截取部分图像数据颜色通道提取合并颜色通道边界填充数值计算图像融合
一、计算机眼中的图像
1.图像操作
构成像素点的数字在0~255之间
RGB叫做图像的颜色通道

h=500,w=500


2.灰度图像

3. 彩色图像

4.图像的读取

5.视频的读取
cv2.VideoCapture()--在OpenCV中,可以使用VideoCapture来读取视频文件,或是摄像头数据。
cv2.VideoCapture.isOpened()--判断文件打开是否成功,可以使用cv2.VideoCapture.isOpened()这个函数。
cv2.VideoCapture.read()--cv2.VideoCapture.read()提供了一个最简单的视频帧处理方式,集合了抓起Grab(),解码retrieve()两个功能,返回解码之后的数据。需要特别注意的是,如果获取到空帧,抓取失败或是文件结束,返回值会是一个空指针
示例:

VideoCapture也是支持读取摄像头的,提供rtsp码流即码流地址,

二
1.截取部分图像数据
import os
import cv2 # 遍历指定目录,显示目录下的所有文件名
def CropImage4File(filepath,destpath):pathDir = os.listdir(filepath) # 列出文件路径中的所有路径或文件for allDir in pathDir:child = os.path.join(filepath, allDir)dest = os.path.join(destpath,allDir)if os.path.isfile(child):image = cv2.imread(child) sp = image.shape #获取图像形状:返回【行数值,列数值】列表sz1 = sp[0] #图像的高度(行 范围)sz2 = sp[1] #图像的宽度(列 范围)#sz3 = sp[2] #像素值由【RGB】三原色组成#你想对文件的操作a=int(sz1/2-64) # x startb=int(sz1/2+64) # x endc=int(sz2/2-64) # y startd=int(sz2/2+64) # y endcropImg = image[a:b,c:d] #裁剪图像cv2.imwrite(dest,cropImg) #写入图像路径if __name__ == '__main__':filepath ='F:\\\maomi' #源图像destpath='F:\\maomi_resize' # resized images saved hereCropImage4File(filepath,destpath)
2. 截取部分图像数据-批量处理
"""
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)处理方式:分别处理注意修改 输入 输出目录 和 生成的文件名output_dir = "./label_temp"input_dir = "./label"
"""
import cv2
import os
import sys
import timedef get_img(input_dir):img_paths = []for (path,dirname,filenames) in os.walk(input_dir):for filename in filenames:img_paths.append(path+'/'+filename)print("img_paths:",img_paths)return img_pathsdef cut_img(img_paths,output_dir):scale = len(img_paths)for i,img_path in enumerate(img_paths):a = "#"* int(i/1000)b = "."*(int(scale/1000)-int(i/1000))c = (i/scale)*100time.sleep(0.2)print('正在处理图像: %s' % img_path.split('/')[-1])img = cv2.imread(img_path)weight = img.shape[1]if weight>1600: # 正常发票cropImg = img[50:200, 700:1500] # 裁剪【y1,y2:x1,x2】#cropImg = cv2.resize(cropImg, None, fx=0.5, fy=0.5,#interpolation=cv2.INTER_CUBIC) #缩小图像cv2.imwrite(output_dir + '/' + img_path.split('/')[-1], cropImg)else: # 卷帘发票cropImg_01 = img[30:150, 50:600]cv2.imwrite(output_dir + '/'+img_path.split('/')[-1], cropImg_01)print('{:^3.3f}%[{}>>{}]'.format(c,a,b))if __name__ == '__main__':output_dir = "../img_cut" # 保存截取的图像目录input_dir = "../img" # 读取图片目录表img_paths = get_img(input_dir)print('图片获取完成 。。。!')cut_img(img_paths,output_dir)
3. 多进程(加快处理)
#coding: utf-8
"""
采用多进程加快处理。添加了在读取图片时捕获异常,OpenCV对大分辨率或者tif格式图片支持不好
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)处理方式:分别处理注意修改 输入 输出目录 和 生成的文件名output_dir = "./label_temp"input_dir = "./label"
"""
import multiprocessing
import cv2
import os
import timedef get_img(input_dir):img_paths = []for (path,dirname,filenames) in os.walk(input_dir):for filename in filenames:img_paths.append(path+'/'+filename)print("img_paths:",img_paths)return img_pathsdef cut_img(img_paths,output_dir):imread_failed = []try:img = cv2.imread(img_paths)height, weight = img.shape[:2]if (1.0 * height / weight) < 1.3: # 正常发票cropImg = img[50:200, 700:1500] # 裁剪【y1,y2:x1,x2】cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg)else: # 卷帘发票cropImg_01 = img[30:150, 50:600]cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg_01)except:imread_failed.append(img_paths)return imread_faileddef main(input_dir,output_dir):img_paths = get_img(input_dir)scale = len(img_paths)results = []pool = multiprocessing.Pool(processes = 4)for i,img_path in enumerate(img_paths):a = "#"* int(i/10)b = "."*(int(scale/10)-int(i/10))c = (i/scale)*100results.append(pool.apply_async(cut_img, (img_path,output_dir )))print('{:^3.3f}%[{}>>{}]'.format(c, a, b)) # 进度条(可用tqdm)pool.close() # 调用join之前,先调用close函数,否则会出错。pool.join() # join函数等待所有子进程结束for result in results:print('image read failed!:', result.get())print ("All done.")if __name__ == "__main__":input_dir = "D:/image_person" # 读取图片目录表output_dir = "D:/image_person_02" # 保存截取的图像目录main(input_dir, output_dir)
4.颜色通道提取
在OpenCV中,cv2.split() 函数用于将多通道数组(如彩色图像)拆分为多个单通道数组。彩色图像通常由多个颜色通道组成,例如BGR(蓝绿红)彩色空间中的三个通道。cv2.split() 函数将这些通道拆分为独立的数组,每个数组只包含一个通道的信息。
以下是使用 cv2.split() 的示例代码:
import cv2# 读取一张彩色图片
image = cv2.imread('path_to_your_color_image.jpg')# 使用 cv2.split() 拆分通道
b, g, r = cv2.split(image)# 此时,b, g, r 分别包含蓝色、绿色和红色通道的图像数据# 如果你想查看每个通道的图像,可以这样做:
cv2.imshow('Blue Channel', b)
cv2.imshow('Green Channel', g)
cv2.imshow('Red Channel', r)# 等待按键,然后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
5.合并颜色通道
cv2.merge() 是 OpenCV 中用来合并多个单通道图像为一个多通道图像的函数。它的工作原理与 cv2.split() 相反。如果你有几个单通道图像(例如,从 cv2.split() 得到的),并且你想将它们合并成一个多通道图像(例如,一个彩色图像),那么你可以使用 cv2.merge()。
以下是 cv2.merge() 的基本用法:
import cv2# 假设你有三个单通道图像:b, g, r
# 这些通常是通过 cv2.split() 从一个彩色图像中得到的
b = ... # 蓝色通道图像
g = ... # 绿色通道图像
r = ... # 红色通道图像# 使用 cv2.merge() 将它们合并为一个彩色图像
bgr_image = cv2.merge([b, g, r])# 现在 bgr_image 是一个包含 b, g, r 三个通道的彩色图像
在 cv2.merge() 函数中,你需要传递一个列表作为参数,该列表包含你想要合并的所有单通道图像。合并的顺序很重要,因为它决定了输出图像中通道的顺序。在上述示例中,我们按照 BGR(蓝绿红)的顺序合并了通道,这是 OpenCV 中彩色图像的标准通道顺序。
如果你想合并的通道顺序与 BGR 不同,例如 RGB(红绿蓝)顺序,你需要相应地调整通道的顺序:
rgb_image = cv2.merge([r, g, b])
请注意,cv2.merge() 要求所有输入图像都具有相同的大小和类型。如果它们的大小或类型不匹配,函数将抛出一个错误。
在处理图像时,理解通道的顺序和类型非常重要,因为不同的图像处理库和函数可能会使用不同的通道顺序和数据类型。OpenCV 使用 BGR 顺序,而一些其他库(如 PIL/Pillow)则使用 RGB 顺序。因此,在将图像从一个库传递到另一个库时,可能需要进行通道顺序的转换。
6.边界填充
cv2.copyMakeBorder() 是 OpenCV 库中的一个函数,用于在图像周围创建边框。cv2.copyMakeBorder(src,top,bottom,left,right,borderType,value)
下面是该函数的参数及其解释:
src:要处理的输入图像。
top:在源图像的顶部添加的像素数目。
bottom:在源图像的底部添加的像素数目。
left:在源图像的左侧添加的像素数目。
right:在源图像的右侧添加的像素数目。
borderType:边框类型,可以是以下之一:
cv2.BORDER_CONSTANT:添加一个常量值的边框。此时需要提供一个value参数,用于指定常量值。
cv2.BORDER_REPLICATE:复制源图像的边界像素。
cv2.BORDER_REFLECT:对源图像的边界进行反射,比如:fedcba|abcdefgh|hgfedcb
cv2.BORDER_REFLECT_101:对源图像的边界进行反射,但略微不同,比如:gfedcb|abcdefgh|gfedcba
cv2.BORDER_WRAP:对源图像的边界进行包装,比如:cdefgh|abcdefgh|abcdefg
value(可选):当borderType为cv2.BORDER_CONSTANT时,指定的常量值。
该函数返回一个新的图像,其大小为原始图像加上指定边框大小,并且根据指定的边框类型进行填充。
示例代码:
image = cv2.imread('./img/dog21.png')
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
# 定义填充参数
top_border = 10
bottom_border = 10
left_border = 10
right_border = 10# 使用常数填充,填充值为0
bordered_image_constant = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_CONSTANT, value=0)# 使用边界复制
bordered_image_replicate = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REPLICATE)# 使用边界反射
bordered_image_reflect = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT)# 使用边界反射101
bordered_image_reflect_101 = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT_101)# 使用边界包裹
bordered_image_wrap = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_WRAP)# 创建子图
fig, ((ax1, ax2, ax3),(ax4, ax5,ax6)) = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True)# 显示图像
ax1.imshow(image.copy())
ax1.set_title('original')
ax2.imshow(bordered_image_constant)
ax2.set_title('constant')
ax3.imshow(bordered_image_replicate, cmap='gray')
ax3.set_title('replicate')
ax4.imshow(bordered_image_reflect, cmap='gray')
ax4.set_title('reflect')
ax5.imshow(bordered_image_reflect_101, cmap='gray')
ax5.set_title('reflect_101')
ax6.imshow(bordered_image_wrap, cmap='gray')
ax6.set_title('wrap')
plt.show()


Python OpenCV库中的边界填充通常用于图像处理,比如二值化后的边缘增强、腐蚀膨胀操作后的填补空洞等。边界填充函数cv2.floodFill()是一个常用工具。这个函数会在指定起点周围填充特定颜色,直到遇到另一个更大区域或者达到边界条件。
以下是一个基本的使用示例:
import cv2
import numpy as np# 假设img是你的输入图像,前景像素是白色,背景是黑色
img = ... # 你的图像数组# 定义起始点和填充的颜色
seed_point = (x, y) # 起始填充点的坐标
new_color = (255, 255, 255) # 填充的新颜色,这里是白色# 应用 floodFill
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.floodFill(img, mask, seed_point, new_color)# 显示结果
cv2.imshow("Filled Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
7.数值计算


cv2.add()函数中,如果像素点相加之和超过255则最大只能为255,不超过则不变
8.图像融合
两个图片shape值如果不一样不能做数值计算
resize函数



1.图像尺寸调整
cv2.resize(img,(w,h)):调整图像img尺寸到w*h;
cv2.resize(img,(0,0),fx=3,fy=1):将w、h设置为0,fx为x向相对原图的比例,fy为y向相对于原图的比例,fx与fy大于1时图像为放大,小于1时为缩小。
2.图像融合
imgf=cv2.addWeighted(img1,α,img2,β,b)
img1与img2为需要融合的图像
α和β为两张图的融合系数
b为图像偏置量
计算方式:imgf=α×img1+β×img2+b
注意:两张可融合的图片必须尺寸一致,如不一致,需通过resize操作调整为一致方可融合
示例代码
import cv2
import os
os.chdir('e://text')
img1=cv2.imread('wanzi.png')
img2=cv2.imread('car.jpg')
def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)cv2.destroyAllWindows()
print(img1.shape)
print(img2.shape)
img2=cv2.resize(img2,(396,203))
#注意此句,img.shape的数值时(h,w),而resize需要的输入是(w,h),两者是颠倒的
print(img2.shape)
a=cv2.addWeighted(img,1,img2,0.5,0)
#注意:相加后,像素中加和超过255的值会被置为255
cv_show('a',a)
相关文章:
opencv学习:图像视频的读取截取部分图像数据颜色通道提取合并颜色通道边界填充数值计算图像融合
一、计算机眼中的图像 1.图像操作 构成像素点的数字在0~255之间 RGB叫做图像的颜色通道 h500,w500 2.灰度图像 3. 彩色图像 4.图像的读取 5.视频的读取 cv2.VideoCapture()--在OpenCV中,可以使用VideoCapture来读取视频文件,或是摄像头数…...
数据结构——单链表详解(超详细)(2)
前言: 上一篇文章小编简单的介绍了单链表的概念和一些函数的实现,不过为了保证文章的简洁,小编把它分成了两篇来写,这一篇小编紧接上一篇文章继续写单链表函数功能的实现: 目录: 1.单链表剩余函数的编写 1.…...
类和对象(2
*续上文中的运算符重载 4 重载运算符时,有前置和后置的,运算符重载的函数名都是operator, 无法很好区分 所以c规定,后置重载时,增加一个int形参 与前置做区分 5 重载<<和>>时需要重载为全局函数, 因为重载为成员函数时, this指针默认抢占了第一个形参位, 第一个形参…...
AcWing 668. 游戏时间2
读取四个整数 A,B,C,D𝐴,𝐵,𝐶,𝐷,用来表示游戏的开始时间和结束时间。 其中 A𝐴 和 B𝐵 为开始时刻的小时和分钟数,C𝐶 和 D𝐷 为结束时刻的小时和分钟数。…...
AI发展下的伦理挑战,应当如何应对?
针对人工智能(AI)发展中面临的伦理挑战,构建一个全面、有效的治理体系至关重要。以下是对三大关键方向——隐私保护、算法公正与透明度、深度伪造管控——的深入探讨与具体实践方案: 方向一:构建可靠的AI隐私保护机制…...
Java面试题--JVM大厂篇之深入解析JVM中的Serial GC:工作原理与代际区别
目录 引言: 正文: 一、Serial GC工作原理 年轻代垃圾回收(Minor GC): 老年代垃圾回收(Major GC或Full GC): 二、年轻代和老年代的区别 年轻代(Young Generation&a…...
网络安全高级工具软件100套
1、 Nessus:最好的UNIX漏洞扫描工具 Nessus 是最好的免费网络漏洞扫描器,它可以运行于几乎所有的UNIX平台之上。它不止永久升级,还免费提供多达11000种插件(但需要注册并接受EULA-acceptance–终端用户授权协议)。 它…...
Ubuntu 添加gcc头文件搜索路径
对个人用户生效 sudo vim ~/.bashrc在该文件末尾添加 #gcc C_INCLUDE_PATH$C_INCLUDE_PATH:your_path export C_INCLUDE_PATH #g CPLUS_INCLUDE_PATH$CPLUS_INCLUDE_PATH:your_path export CPLUS_INCLUDE_PATH最后,重启终端即可生效 可用以下命令查看搜索路径 ec…...
c++写数据结构进入文件
以下定义一个数据结构 struct SData {std::string url;int number;std::string memo; };写入文件 void StorageDataToFile(const std::string& filename, const SData& data) {std::ofstream outFile(filename);if (outFile.is_open()) {// 使用std::stringstream格式…...
Java实验4
实验内容 考试题 要求在一个界面内至少显示5道选择题,每道题4个选项。题目从数据库读取。表结构自定义。 另有2个命令按钮,分别为“重新答题”(全部选项及正确答题数清空)和“提交”(计算),在…...
优化 Java 数据结构选择与使用,提升程序性能与可维护性
优化 Java 数据结构选择与使用,提升程序性能与可维护性 引言 在软件开发中,数据结构的选择是影响程序性能、内存使用以及代码可维护性的关键因素之一。Java 作为一门广泛使用的编程语言,提供了丰富的内置数据结构,如数组、链表、…...
华为USG6000V防火墙安全策略用户认证
目录 一、实验拓扑图 二、要求 三、IP地址规划 四、实验配置 1🤣防火墙FW1web服务配置 2.网络配置 要求1:DMZ区内的服务器,办公区仅能在办公时间内(9:00-18:00)可以访问,生产区的设备全天可以访问 要求2:生产区不…...
Windows 应急响应手册v1.2 -百度网盘下载
家好,《Windows 应急响应手册 v1.2》 发布啦! 本次是一个大更新,解决了两个大问题,添加了4个大的事件处置流程以及一些更新,下载链接在文末 两个大问题是: Windows 平台的 Adobe acrobat DC 、Firefox 浏…...
Billu_b0x靶机
信息收集 使用arp-scan 生成网络接口地址来查看ip 输入命令: arp-scan -l 可以查看到我们的目标ip为192.168.187.153 nmap扫描端口开放 输入命令: nmap -min-rate 10000 -p- 192.168.187.153 可以看到开放2个端口 nmap扫描端口信息 输入命令&…...
GitHub+Picgo图片上传
Picgo下载,修改安装路径,其他一路下一步! 地址 注册GitHub,注册过程不详细展开,不会的百度一下 地址 新建GitHub仓库存放图片 ——————————————————————————————————————————…...
springboot的事务管理
在yml配置文件中添加以下:logging.level.org.springframework.jdbc.support.JdbcTransactionManagerdebug...
深入解析rsync:定义、架构、原理、应用场景及实战指南
前言 在现代数据管理和传输过程中,数据同步工具起着至关重要的作用。特别是在需要高效、可靠地在不同服务器或设备之间传输大量数据时,选择一款优秀的数据同步工具显得尤为重要。在众多工具中,rsync以其高效、灵活、可靠的特点,成…...
discuz手机版发帖提示“网络出现问题,请稍后再试”
大家好,我是网创有方。今天分享一个discuz发帖报错的问题。 问题描述:discuz手机网页端发帖提示“网络出现问题,请稍后再试”,但是实际上帖子已经发布成功。 本次记录下分析过程: 第一步:打开宝塔&#…...
图片如何去水印,PS 图片去水印的几种常见方法
在数字图像的世界里,水印常常被用来标识版权或防止未经授权的使用,但有时它们却成为了美观的障碍。无论是出于个人偏好还是专业需求,去除图片上的水印已经成为一项常见的任务。 Adobe Photoshop 作为行业标准的图像编辑软件,提供…...
【从零开始实现stm32无刷电机FOC】【实践】【5/6 stm32 adc外设的高级用法】
目录 采样时刻触发采样同步采样 点击查看本文开源的完整FOC工程 本节介绍的adc外设高级用法用于电机电流控制。 从前面几节可知,电机力矩来自于转子的q轴受磁力,而磁场强度与电流成正比,也就是说电机力矩与q轴电流成正相关,控制了…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
