算法项目报告:物流中的最短路径问题
问题描述
物流问题
有一个物流公司需要从起点A到终点B进行货物运输,在运输过程中,该公司需要途径多个不同的城市,并且在每个城市中都有一个配送站点。为了最大程度地降低运输成本和时间,该公司需要确定经过哪些配送站点,并且给出完成货物运输的最短路径长度。
路线分布图

问题分析
问题简化
可以将该问题抽象为多段图的最短路径问题,其中每个城市对应图中的一个节点,不同城市之间的距离对应着图中的边权,城市内部的配送站可以看作同一个节点。从起点A到终点B的货物运输路径可以表示为多段图中的一条路径。找到起点A到终点B的最短路径并给出路径长度即可求解此问题。
路线简化图

| 下标 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 元素值 | 4 | 8 | 6 | 10 | 8 | 12 | 14 | 17 | 15 |
| 状态转换 | 0->1 | 0->2 | 0->3 | 1->4 | 3->5 | 5->6 | 5->7 | 5->8 | 7->9 |
最短路径为:0->3->5->7->9,最短路径长度为15
算法设计
算法设计分析
多段图的最短路径问题满足最优性原理,可以使用动态规划法求解。
设Cuv表示多段图的有向边<u,v>上的权值,从源点s到终点t的最短路径长度记为d(s,t),原问题的部分解d(s,v),则下式成立:
d(s,v)=Csv (<s,v>∈E)
d(s,v)=min{d(s,u)+Cuv} (<u,v>∈E)
数组arc[n][n]存储图的代价矩阵,数组cost[n]存储最短路径长度,cost[j]表示从源点s到顶点j的最短路径长度,数组path[n]记录转移状态,path[j]表示从源点s到顶点j的路径上顶点j的前一个顶点。
算法伪代码
输入:多段图的代价矩阵
输出:最短路径长度及路径c[n][n]
1.循环变量j从1~n-1重复下述操作,执行填表工作
1.1考察顶点j的所有入边,对于边<i,j>∈E,执行下述操作
1.1.1cost[j]=min{cost[i]+c[i][j]}
1.1.2path[j]=使cost[i]+c[i][j]最小的i
1.2 j++
2.输出最短路径长度cost[n-1]
3.循环变量i=path[n-1],循环直到path[i]=0,输出最短路径经过的顶点
3.1输出path[i]
3.2 i=path[i]
实验结果

最短路径

最短路径为:0->3->5->7->9,最短路径长度是15
算法分析
时间复杂度分析
算法第一部分是依次计算从源点到各个顶点的最短路径长度,由两层循环嵌套组成,外层循环执行n-1次,内层循环对所有入边进行计算,在所有循环中,每条入边只计算一次。假设图的边数为m,时间复杂度为O(m);第二部分是输出最短路径经过的顶点,设多段图划分为k段,时间复杂度为O(k)。整个算法的时间复杂度为O(m+k)。
空间复杂度分析
算法的空间复杂度主要体现在图的代价矩阵arc[n][n]的存储,空间复杂度为O(n^2),存储最短路径长度的数组cost[n]的空间复杂度为O(n),转移状态记录数组path[n]的空间复杂度为O(n),所以整个算法的空间复杂度为O(n^2)。
源代码
#include<iostream>
using namespace std;
#define INF 999
int arc[10][10]; // 最多10个点
int CreateGraph()
{int i, j, k;int weight;int vnum, arcnum;cout << "请输入顶点和边的个数:";cin >> vnum >> arcnum;for (int i = 0; i < vnum; i++) // 初始化图的代价矩阵 for (int j = 0; j < vnum; j++)arc[i][j] = INF;for (k = 0; k < arcnum; k++){cout << "请输入第" << k + 1 << "条边的两个顶点和权值:";cin >> i >> j >> weight;arc[i][j] = weight;}return vnum; // 返回顶点的个数
}
// 求 n个顶点的多段图的最短路径
int BackPath(int n)
{int i, j, temp;int cost[100], path[100]; // 存储路径长度和路径 for (i = 1; i < n; i++){cost[i] = INF;path[i] = -1;}cost[0] = 0; // 顶点0为源点 path[0] = -1;for (j = 1; j < n; j++) // 依次计算后面下标为1到n-1的点(填表) for (i = j - 1; i >= 0; i--){if (cost[i] + arc[i][j] < cost[j]){cost[j] = cost[i] + arc[i][j]; // 更新值 path[j] = i; // 记录前一个点 }}// 输出路径i = n - 1;cout << "最短路径为:" << i;while (path[i] >= 0)// 前一个点大于0 {cout << "<-" << path[i];i = path[i]; // 更新为前一个点 }cout << endl;return cost[n - 1]; // 返回最短路径长度
}
int main()
{int graph = CreateGraph();cout << "最短路径长度为:" << BackPath(graph) << endl;return 0;
}
感谢大家的观看
相关文章:
算法项目报告:物流中的最短路径问题
问题描述 物流问题 有一个物流公司需要从起点A到终点B进行货物运输,在运输过程中,该公司需要途径多个不同的城市,并且在每个城市中都有一个配送站点。为了最大程度地降低运输成本和时间,该公司需要确定经过哪些配送站点ÿ…...
linux中 crontab 定时器用法
*/10 * * * * python3 /home/code/haha2.py Crontab 当然,以下是一个简短的博客,介绍了 Cron 和 Crontab 的用法: --- # 简介:使用 Cron 和 Crontab 在 Linux 中进行定时任务调度 在 Linux 系统中,Cron 是一个用于…...
java算法day16
java算法day16 112 路径总和404 左叶子之和513 找树左下角的值 112 路径总和 题型判定为自顶向下类型,并且为路径和类型。 那就套模板。 自顶向下就是从上到下处理,那么就是前序遍历的思想。 class Solution {boolean res false;public boolean hasP…...
华为HCIP Datacom H12-821 卷41
1.多选题 以下关于BGP Atomic_Aggregate和Aggregator的描述,正确的是哪些项? A、Aggregator属性属于可选过渡属性 B、Atomic_Aggregate属于公认任意属性 C、收到携带Atomic_Aggregate属性的路由表示这条路由不能再度明细化 D、 Agregator表示某条路由可能出现…...
【React Hooks原理 - forwardRef、useImperativeHandle】
概述 上文我们聊了useRef的使用和实现,主要两个用途:1、用于持久化保存 2、用于绑定dom。 但是有时候我们需要在父组件中访问子组件的dom或者属性/方法,而React中默认是不允许父组件直接访问子组件的dom的,这时候就可以通过forwa…...
用于可穿戴传感器的人类活动识别、健康监测和行为建模的大型语言模型
这篇论文题为《用于可穿戴传感器的人类活动识别、健康监测和行为建模的大型语言模型:早期趋势、数据集和挑战的综述》,由埃米利奥费拉拉(Emilio Ferrara)撰写。论文主要内容如下: 摘要 可穿戴技术的普及使得传感器数…...
react事件绑定
react基础事件绑定 function passwordChange(e){console.log(e.target.value); } function usernameChange(e){console.log(e.target.value); }function App() {return (<div><input type"text" placeholder请输入用户名onChange{usernameChange}/><i…...
spring框架之AOP注解方式(java代码实例)
目录 半注解形式: 业务层接口实现类: 编写切面类: 在配置文件里面唯一需要加的: 测试类: 全注解形式: 不要配置文件,改为配置类: 同样的业务层接口实现类: 同样的…...
windows下gcc编译C、C++程序 MinGW编译器
文章目录 1、概要2、MinGW安装2.1 编译器下载2.2 编译器安装2.3 设置环境变量2.4 查看gcc版本信息 3、编译C、C程序3.1 编写Hello World.c3.2 编译C程序3.3 运行程序3.4 编译C程序 1、概要 GCC原名为GNU C语言编译器(GNU C Compiler),只能处…...
uniapp启动图延时效果,启动图的配置
今天阐述uniapp开发中给启动图做延迟效果,不然启动图太快了,一闪就过去了; 一:修改配置文件:manifest.json "app-plus" : {"splashscreen" : {"alwaysShowBeforeRender" : false,"…...
SQL,python,knime将数据混合的文字数字拆出来,合并计算(学习笔记)
将下面将数据混合的文字数字拆出来,合并计算 一、SQL解决: ---创建表插入数据 CREATE TABLE original_data (id INT AUTO_INCREMENT PRIMARY KEY,city VARCHAR(255),value DECIMAL(10, 2) );INSERT INTO original_data (city, value) VALUES (上海0.5…...
【算法】LRU缓存
难度:中等 题目: 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中,…...
解决elementUI列表的疑难杂症,排序显示错乱的问题
大家好,在使用elementUI表格时,有时会出现一些意料之外的问题,比如数据排序正常但表格显示、排序错乱等。在网上搜索后一般有2种解决方法:1.给表格每一项的el-table-column添加唯一的id用于区分。2.给表格每一项的el-table-column…...
重大消息:手机车机互联投屏专题发布-千里马带你学框架
背景: android投屏的使用场景以前在新能源车机还没火爆时候,大部分停留在手机小屏幕投屏到大屏幕的情况及整个多端设备的互动,整体需求和技术发展其实也就是比较有限,但是新能源车机火爆后,那么这种手机和车机互联互动…...
jail子系统里升级Ubuntu focal到jammy
Ubuntu focal是20.04 ,jammy版本是22.04,本次的目的就是将FreeBSD jail子系统里的Ubuntu 从20.04升级到22.04 。这个focal 子系统是通过cbsd克隆得到的。使用CBSD克隆复制Ubuntu jail子系统环境-CSDN博客 do-release-upgrade升级没成功,用de…...
2024年7月20日(星期六)骑行支里山
2024年7月20日 (星期六)骑行支里山,早8:00到8:30,大观公园门口集合,9:00准时出发【因迟到者,骑行速度快者,可自行追赶偶遇。】 偶遇地点:大观公园门口集合 ,家住东,南,北…...
Python:正则表达式相关整理
最近因为一些原因频繁使用正则表达式,因为以前系统整理过关于正则表达式的相关知识,所以这里仅记录使用期间遇到的问题。 本文内容基于re包 1. match和search方法的区别 在Python中,re.search和re.match都是用于匹配字符串的正则表达式函数&a…...
ChatGPT对话:有关花卉数据集
【编者按】编者准备研究基于深度学习的花卉识别,首先需要花卉数据集。 后续,编者不断会记录研究花卉识别过程中的技术知识,敬请围观 1问:推荐一下用于深度学习的花卉数据集 ChatGPT 以下是一些用于深度学习的优秀花卉数据集&am…...
特征向量及算法
数据挖掘流程 加载数据 把需要的模型数据先计算出来 特征工程 提取数据特征,对特征数据进行清洗转化 数据的筛选和清洗数据转化 类型转为 性别 男,女 ----> 1,0特征交叉 性别/职业/收入 —> 新特这 优质男性程序员 将多个特征值组合在一起特征筛选…...
cpp 强制转换
一、static_cast static_cast 是 C 中的一个类型转换操作符,用于在类的层次结构中进行安全的向上转换(从派生类到基类)或进行不需要运行时类型检查的转换。它主要用于基本数据类型之间的转换、对象指针或引用的向上转换(即从派生…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...
