大数据框架之Hadoop:HDFS(一)HDFS概述
1.1HDFS产出背景及定义
-
HDFS
产生背景随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。
HDFS
只是分布式文件管理系统中的一种。 -
HDFS
定义HDFS
(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件,其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。HDFS
的使用场景: 适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1.2HDFS优缺点
1.2.1优点
1)高容错性
- 数据自动保存多个副本。它通过增加副本的形式,提高容错性;
- 某一个副本丢失以后,它可以自动恢复。
2)适合处理大数据
-
数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
-
文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)可构建在廉价机器上,通过多副本机制,提高可靠性
1.2.2缺点
1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储
-
存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
-
小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
3)不支持并发写入、文件随机修改
-
一个文件只能有一个写,不允许多个线程同时写;
-
仅支持数据append (追加) ,不支持文件的随机修改。
1.3HDFS组成架构
1)NameNode (nn) :就是Master,它是一个主管、管理者。
-
管理HDFS的名称空间;
-
配置副本策略;
-
管理数据块(Block)映射信息;
-
处理客户端读写请求。
2)DataNode: 就是Slave。NameNode下达命令,DataNode执行实际的操作。
-
存储实际的据块
-
执行数据块的读/写操作
3)Client: 就是客户端
- 文件切分。文件上传HDFS的时候,client将文件切分成一个一个的Block,然后进行上传;
- 与NameNode交互,获取文件的位置信息;
- 与DataNode交互,读取或者写入数据
- Client提供一些命今来管理HDFS,比如NameNode格式化;
- Client可以通过一些命今来访问HDFS,比如对HDFS增删查改操作
4)SecondaryNameNode: 并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务.
-
辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode;
-
在紧急情况下,可辅助恢复NameNode。
1.4HDFS文件块大小(面试重点)
1.4.1HDFS文件块大小
HDFS中的文件在物理上是分块存储(Block),块的大小可以通过配置参数(dfs.blocksize)来规定,默认大小在Hadoop2.x和Hadoop3.x版本中是128M,老版本Hadoop1.x中是64M。
1.4.2HDFS文件块大小设置原理
HDFS文件块大小设置主要取决于磁盘传输速率,目前通过Namenode对HDFS元数据进行寻址的时间约为10ms,即查找到目标block的时间为10ms。
寻址时间为传输时间的1%时,则为最佳状态
因此,传输时间为10ms/0.01=1000ms=1s
目前磁盘的传输速率普遍为100MB/s
因此,block大小为1s*100MB/s=100MB
因为电脑底层数据采用二进制存储,所以目前的block块官方大小设置为128MB。
总结:HDFS文件块大小设置主要取决于磁盘传输速率,生产中采用高速磁盘作为存储介质的可以考虑在HDFS的配置文件中设置dfs.blocksize参数调整block块大小。
1.4.3块大小要设置合理
HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置;
如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
相关文章:

大数据框架之Hadoop:HDFS(一)HDFS概述
1.1HDFS产出背景及定义 HDFS 产生背景 随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件…...

20230210组会论文总结
目录 【Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and Transformer-Based Method】 【ShuffleMixer: An Efficient ConvNet for Image Super-Resolution】 【A Close Look at Spatial Modeling: From Attention to Convolution 】 【DEA-Net: Single i…...

Python - 数据容器dict(字典)
目录 字典的定义 字典数据的获取 字典的嵌套 字典的各种操作 新增与更新元素 [Key] Value 删除元素 pop和del 清空字典 clear 获取全部的键 keys 遍历字典 容器通用功能总览 字典的定义 使用{},不过存储的元素是一个个的:键值对&#…...
傻白探索Chiplet,文献阅读笔记汇总(十二)
Summary(方便分类管理) Article(文献出处) 方便再次搜索 Data(文献数据) 总结归纳,方便理解 Comments(对文献的想法)/Why(为什么看这篇文献)强…...

#电子电气架构——Vector工具常见问题解决三板斧
我是穿拖鞋的汉子,魔都中一位坚持长期主义的工科男。 今天在与母亲聊天时,得到老家隔壁邻居一位大姐年初去世的消息,挺让自己感到伤感!岁月如流水,想抓都抓不住。想起平时自己加班的那个程度,可能后续也要自己注意身体啦。 老规矩,分享一段喜欢的文字,避免自己成为高知…...
文本三剑客之grep
Grep是Linux用户用来搜索文本字符串的命令行工具。您可以使用它在文件中搜索某个单词或单词的组合,也可以将其他Linux命令的输出通过管道传输到grep,因此grep可以仅显示您需要查看的输出。grep的命令格式如下:grep 选项 查找条件 目标文件…...

pwn手记录题1
fuzzerinstrospector(首届数字空间安全攻防大赛) 主体流程(相对比较简单,GLibc为常见的2.27版本, Allocate申请函数(其中有两个输入函数Read_8Int、Read_context; 还存在着后门函数; 关键点在于如何利用…...

自动驾驶规划 - Apollo Lattice Planner算法【1】
文章目录Lattice Planner简介Lattice Planner 算法思路1. 离散化参考线的点2. 在参考线上计算匹配点3. 根据匹配点,计算Frenet坐标系的S-L值4. parse the decision and get the planning target5. 生成横纵向采样路径6. 轨迹cost值计算,进行碰撞检测7. 优…...

以太坊数据开发-Web3.py-安装连接以太坊数据
Web3.py是连接以太坊的python库,它的API从web3.js中派生而来。如果你用过web3.js,你会对它的API很熟悉。但惭愧的是,作为一个以太坊上Dapp的开发者,我几乎没有直接使用过web3.js,也没有看过它的API。 官网:…...

【触摸屏功能测试】MQTT_STD本地调试说明-测试记录
1、MQTT简介 MQTT是一种基于发布/订阅模式的“轻量级”通讯协议。它是针对受限的、低带宽的、高延迟的、网络不可靠的环境下的网络通讯设备设计的。 发布是指客户端将消息传递给服务器,订阅是指客户端接收服务器推送的消息。每个消息有一个主题,包含若干…...

六十分之十三——黎明前
目录一、目标二、计划三、完成情况四、提升改进(最少3点)五、意外之喜(最少2点)六、总结一、目标 明确可落地,对于自身执行完成需要一定的努力才可以完成的 1.8本技术管理书籍阅读(使用番茄、快速阅读、最后输出思维导图)2.吴军系列硅谷来信1听书、香帅的北大金融…...

【Call for papers】CRYPTO-2023(CCF-A/网络与信息安全/2023年2月16日截稿)
Crypto 2023 will take place in Santa Barbara, USA on August 19-24, 2023. Crypto 2023 is organized by the International Association for Cryptologic Research (IACR). The proceedings will be published by Springer in the LNCS series. 文章目录1.会议信息2.时间节…...
线程的信号量和互斥量
文章目录线程的信号量初始化信号量:sem_init减少信号量:sem_wait增加信号量:sem_post删除信号量:sem_destroy代码示例线程的互斥量初始化互斥量:pthread_mutex_init锁住互斥量:pthread_mutex_lock解锁互斥量…...
关于Linux,开源社区与国产化的本质区别
因为生产力驱动而非理想主义驱动。 开源运动的蓬勃发展来自于GNU(GNU is not unix),RichardMatthewStallman领导着一群黑客,带着对比尔盖茨的鄙视,制定了GPL协议,以后人人都能从伟大的前人身上学习到源代码的精髓,让软…...

Win11下Linux子系统迁移方法及报错解决
Win11 将Linux子系统从C盘迁移到其他盘Win11下Linux子系统迁移方法及报错解决1、下载LxRunOffline2、ERROR:directory is not empty 报错解决参考链接Win11下Linux子系统迁移方法及报错解决 C盘满了,Ubuntu子系统占了100多G怎么办?直接将子系…...
python维护的一些基础方法
1】通过命令行查看python安装库的基本信息 pip show numpy # 查看python中numpy库的安装版本信息 2】python 环境的开发与维护 python的开发与C\MATLAB等最大的不同就是,python中版本的更新不对历史版本负责,就是说你以历史版本开发的python程序&#…...
C语言 数组元素的指针
1.一个变量有地址,一个数组包含若干个元素,每个数组元素都在内存中占用存储单元,它们都有相应的地址。 2.指针变量既然可以指向变量,当然也可以指向数组元素(把某一元素的地址放入一个指针变量中)。 3.所谓…...

(C语言)指针进阶
问:1. ( ),[ ],->,,--,. ,*的操作符优先级是怎么样的?2. Solve the problems:只有一个常量字符串与一个字符指针,该怎么打印常量字符串所有内容…...

DS期末复习卷(三)
选择题 某数据结构的二元组形式表示为A(D,R),D{01,02,03,04,05,06,07,08,09},R{r},r{<01,02>,<01&a…...

Java链表模拟实现+LinkedList介绍
文章目录一、模拟实现单链表成员属性成员方法0,构造方法1,addFirst——头插2,addLast——尾插3,addIndex——在任意位置插入3.1,checkIndex——判断index合法性3.2,findPrevIndex——找到index-1位置的结点…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...