人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解。在机器学习和深度学习领域,模型的训练目标是找到一组参数,使得模型能够从训练数据中学习到有用的模式,并对未知数据做出准确预测。这一过程涉及到解决两种主要的拟合问题:欠拟合(Underfitting)和过拟合(Overfitting)。
文章目录
- 一、拟合问题概述
- 欠拟合现象
- 过拟合现象
- 解决策略
- 二、正则化方法
- 1. L1正则化
- 2. L2正则化
- 三、正则化参数的更新
- 四、Dropout
- 五、代码实现
一、拟合问题概述
在机器学习领域,拟合问题是指通过训练数据找到最佳模型参数,使得模型在未知数据上的表现尽可能好。拟合问题主要包括欠拟合和过拟合两种现象。
欠拟合现象
定义:欠拟合指的是机器学习模型在训练集上的表现不佳,无法充分学习到数据的内在规律,导致模型的预测能力低下。这就好比一个学生在考试中,由于知识掌握不牢固,对已知题目的解答都做不好,更不用说应对新题目了。
原因分析:
模型复杂度低:如果模型太简单,如用线性模型去拟合非线性的数据分布,那么模型就无法捕捉到数据中的复杂模式,就像用直尺去测量曲线长度一样,永远无法得到准确的结果。
训练数据不足:模型需要足够的数据来学习和概括数据的特性。如果数据量太少,模型可能没有机会接触到数据的全貌,就像从一本书中只读了几页就想理解整本书的内容一样困难。
特征选择不当:如果使用的特征与目标预测无关或相关性弱,模型就难以从中学习到有效的信息,相当于在解决问题时选择了错误的工具。
过拟合现象
定义:过拟合是指模型在训练数据上表现得过于出色,以至于对训练数据中的噪声或偶然性细节也进行了学习,这导致模型在面对未见过的数据时,泛化能力下降。这就像一个学生过分依赖于记忆特定的例题,而没有真正理解背后的原理,因此在遇到稍微变化的问题时就束手无策。
原因分析:
模型复杂度过高:如果模型过于复杂,如高阶多项式回归,它可能会过度适应训练数据中的每一个细节,包括噪声和异常值,而不是学习数据的普遍规律。
训练数据包含噪声:现实世界的数据往往带有噪声,如果模型试图学习这些噪声,就会导致过拟合。这类似于试图从嘈杂的环境中听清对话,噪声会干扰对真实信息的理解。
训练数据量不足:即使模型复杂度适中,但如果训练数据量不够,模型仍然可能过拟合。这是因为数据量不足时,模型可能会把偶然出现的模式误认为是普遍规律。
解决策略
增加模型复杂度:对于欠拟合,可以通过增加模型复杂度来提升模型的学习能力,如使用更高阶的多项式或更复杂的神经网络结构。
增加训练数据量:无论是欠拟合还是过拟合,增加训练数据量都能帮助模型更好地学习数据的分布,提高泛化能力。
特征工程:优化特征选择,确保模型能够基于有意义的特征进行学习。
正则化:使用L1或L2正则化等技术来限制模型复杂度,防止过拟合。
交叉验证:通过交叉验证来评估模型的泛化能力,确保模型不仅在训练数据上表现好,也能在未见数据上给出准确预测。
早停法:在训练过程中监控验证集的性能,一旦发现验证集上的性能不再提升,就停止训练,避免过拟合。
二、正则化方法
为了解决过拟合问题,通常采用正则化方法对模型进行约束。常见的正则化方法有L1正则化和L2正则化。
1. L1正则化
L1正则化的目标函数为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + α ∑ j = 1 n ∣ θ j ∣ J(\theta) = \frac{1}{2m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})^2 + \alpha\sum_{j=1}^{n}|\theta_j| J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2+αj=1∑n∣θj∣
其中,第一项为损失函数,第二项为L1正则化项, α \alpha α为惩罚系数, θ j \theta_j θj为模型参数。
2. L2正则化
L2正则化的目标函数为:
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + α 2 ∑ j = 1 n θ j 2 J(\theta) = \frac{1}{2m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\alpha}{2}\sum_{j=1}^{n}\theta_j^2 J(θ)=2m1i=1∑m(hθ(x(i))−y(i))2+2αj=1∑nθj2
其中,第一项为损失函数,第二项为L2正则化项, α \alpha α为惩罚系数, θ j \theta_j θj为模型参数。
三、正则化参数的更新
在优化目标函数时,我们需要对正则化参数进行更新。以下为L2正则化的参数更新公式:
θ j : = θ j − α ( 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ θ j ) \theta_j := \theta_j - \alpha\left(\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_j^{(i)} + \lambda\theta_j\right) θj:=θj−α(m1i=1∑m(hθ(x(i))−y(i))xj(i)+λθj)
其中, λ = α m \lambda = \frac{\alpha}{m} λ=mα为正则化参数。
四、Dropout
Dropout是一种有效的正则化方法,通过在训练过程中随机丢弃部分神经元,来减少模型对特定训练样本的依赖。以下是Dropout的实现步骤:
(1)在训练过程中,按照一定概率随机丢弃神经元;
(2)在测试过程中,将所有神经元的输出乘以概率因子。
五、代码实现
以下是基于PyTorch的拟合问题及优化代码实现:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class LinearRegression(nn.Module):def __init__(self, input_dim, output_dim):super(LinearRegression, self).__init__()self.linear = nn.Linear(input_dim, output_dim)def forward(self, x):return self.linear(x)
# 生成数据
x = torch.randn(100, 1)
y = 3 * x + 2 + torch.randn(100, 1)
# 实例化模型
model = LinearRegression(1, 1)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=0.01) # L2正则化
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):model.train()optimizer.zero_grad()outputs = model(x)loss = criterion(outputs, y)loss.backward()optimizer.step()if (epoch+1) % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
# 测试模型
model.eval()
with torch.no_grad():predicted = model(x).detach().numpy()print(f'预测值:{predicted}')
通过本文的介绍,相信大家对拟合问题及优化方法有了更深入的了解。在实际应用中,可根据数据特点选择合适的正则化方法,以提高模型的泛化能力。
相关文章:

人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解。在机器学习和深度学习领域,模型的训练目标是找到一组参数,使得模型能够从训练数据中学习到有用的模式&am…...
Java异常抛出与处理方法
在Java编程中,异常处理是一个非常重要的部分。通过正确的异常处理,我们可以提高程序的健壮性和可靠性,避免程序在运行过程中出现意外的崩溃。本文将详细讲述Java异常的抛出与处理方法,并通过示例代码进行说明。 一、Java异常的分类 Java中的异常体系结构可以分为三类: 检…...

兼容性测试主要有什么类型?
兼容性测试的类型 有两种类型的兼容性测试。这是一个快速细分。 1、前向兼容性测试 向前兼容性测试或向上兼容性测试可确保当前软件版本在相关组件(例如操作系统、浏览器和第三方库)的未来版本中保持功能。此类测试对于在系统升级期间保持稳定性和用户体验至关重要。 例如&…...
设计模式--组合模式
组合模式(Composite Pattern)详解 组合模式是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得用户对单个对象和组合对象的使用具有一致性。 适用场景 需要表示对象的部分-整体层次结构时&am…...
ArduPilot开源代码之AP_DAL_RangeFinder
ArduPilot开源代码之AP_DAL_RangeFinder 1. 源由2. 框架设计2.1 枚举 Status2.2 公有方法2.3 私有成员变量 3. 重要例程3.1 应用函数3.1.1 ground_clearance_cm_orient3.1.2 max_distance_cm_orient3.1.3 has_orientation3.1.4 get_backend 3.2 其他函数3.2.1 AP_DAL_RangeFind…...

SpringCloud教程 | 第九篇: 使用API Gateway
1、参考资料 SpringCloud基础篇-10-服务网关-Gateway_springcloud gateway-CSDN博客 2、先学习路由,参考了5.1 2.1、建了一个cloudGatewayDemo,这是用来配置网关的工程,配置如下: http://localhost:18080/aaa/name 该接口代码如…...

数据结构——hash(hashmap源码探究)
hash是什么? hash也称为散列,就是把任意长度的输入,通过散列算法,变成固定长度的输出,这个输出值就是散列值。 举例来说明一下什么是hash: 假设我们要把1~12存入到一个大小是5的hash表中,我们…...

国产麒麟、UOS在线打开pdf加盖印章
PageOffice支持两种电子印章方案,可实现对Word、Excel、PDF文档加盖PageOffice自带印章或ZoomSeal电子印章(全方位保护、防篡改、防伪造)。Word和Excel的盖章功能请参考:Word和Excel加盖印章和签字功能 (目前只支持win…...

破解反爬虫策略 /_guard/auto.js(二)实战
这次我们用上篇文章讲到的方法来真正破解一下反爬虫策略,这两个案例是两个不同的网站,一个用的是 /_guard/auto.js,另一个用的是/_guard/delay_jump.js。经过解析发现这两个网站用的反爬虫策略基本是一模一样,只不过在js混淆和生成…...
同样是人工智能 客户在哪儿AI和GPT等大模型有什么不同
书接上回。为了统一回答朋友们的疑惑,此前的两篇文章,着重讲述了客户在哪儿AI的企业全历史行为数据和企业信息查询平台上的数据的区别,以及客户在哪儿AI的ToB获客服务和AI外呼机器人的获客服务的不同。本期接着讲——客户在哪儿AI VS 大模型&…...

AES Android IOS H5 加密方案
前景: 1、本项目原有功能RSA客户端对敏感信息进行加密 2、本次漏洞说是服务端返回值有敏感信息,需要密文返回 3、最初只跟H5联调成功,后续APP联调失败(H5和APP的需求排期不一致),没关注到通用性 方案: 本次方案不…...

一文了解变阻器和电位器的定义、原理、应用及其对比
变阻器的定义 两端可变电阻器(称为变阻器)利用电阻来调节电流。电阻丝环绕在陶瓷或瓷器等绝缘芯上。当刮水器沿着电阻丝移动时,电路的有效电阻会发生变化。因此,它提供了精确的电流控制。调光器、电机速度控制器和加热元件使用变…...

WPF实现一个带旋转动画的菜单栏
WPF实现一个带旋转动画的菜单栏 一、创建WPF项目及文件1、创建项目2、创建文件夹及文件3、添加引用 二、代码实现2.ControlAttachProperty类 一、创建WPF项目及文件 1、创建项目 打开VS2022,创建一个WPF项目,如下所示 2、创建文件夹及文件 创建资源文件夹&…...

使用Dockerfile构建镜像
目录 1.使用Dockerfile构建tomcat镜像 1.1 通过ARG传参构建不同版本的tomcat 2.缩小镜像的体积大小 2.1 使用较小体积的基础镜像 2.2 多级构建减少体积 1.使用Dockerfile构建tomcat镜像 cd /opt mkdir tomcat cd tomcat/ 上传tomcat所需的依赖包 使用tar xf 解压三个压缩…...
概率论原理精解【3】
文章目录 向量值向量值函数导数对称矩阵定义性质例子应用 向量值理论基础定义性质应用示例 向量值函数的导数定义性质应用 向量值 向量值函数导数 D n ⊂ R n , 向量值函数 f : D n → R m D^n \subset R^n,向量值函数f:D^n\rightarrow R^m Dn⊂Rn,向量值函数f:Dn→Rm 1. 向量…...
[C/C++入门][循环]14、计算2的幂(2的n次方)
计算2的幂(即2的n次方)非常经典。你懂几种方法呢?很多人只会一种,我们来分析一下。 可以通过多种方式实现: 1、最简单的方法之一是使用位运算符<<,它本质上是在二进制表示下对2进行左移操作&#x…...

RPC与服务的注册发现
文章目录 1. 什么是远程过程调用(RPC)?2. RPC的流程3. RPC实践4. RPC与REST的区别4.1 RPC与REST的相似之处4.2 RPC与REST的架构原则4.3 RPC与REST的主要区别 5. RPC与服务发现5.1 以zookeeper为服务注册中心5.2 以etcd为服务注册中心 6. 小结参考 1. 什么是远程过程调用(RPC)?…...

3112. 访问消失节点的最少时间 Medium
给你一个二维数组 edges 表示一个 n 个点的无向图,其中 edges[i] [ui, vi, lengthi] 表示节点 ui 和节点 vi 之间有一条需要 lengthi 单位时间通过的无向边。 同时给你一个数组 disappear ,其中 disappear[i] 表示节点 i 从图中消失的时间点࿰…...

FastAPI 学习之路(五十二)WebSockets(八)接受/发送json格式消息
前面我们发送的大多数都是text类型的消息,对于text消息来说,后端处理出来要麻烦的多,那么我们可以不可以传递json格式的数据,对于前后端来说都比较友好,答案是肯定的,我们需要做下处理。 首先,…...
Go语言并发编程-案例_3
案例 并发目录大小统计 业务逻辑 统计目录的文件数量和大小(或其他信息)。示例输出: // 某个目录:2637 files 1149.87 MB 实现思路 给定一个或多个目录,并发的统计每个目录的size,最后累加到一起。 当…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...