当前位置: 首页 > news >正文

【单目3D检测】smoke(1):模型方案详解

纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

在这里插入图片描述

  • 题目:SMOKE:Single-Stage Monocular 3D Object Detection via Keypoint Estimation
  • 代码:https://github.com/lzccccc/SMOKE

Introduction


2D目标检测目前已经在精度和速度上都取得了不错的成绩,而3D目标检测由于需要同时估计出目标的位置与姿态,因此相比2D是一个更具挑战的方向。
目前性能最好的3D目标检测还是需要依赖激光雷达的点云或者点云+图像融合,考虑到成本因素,仅依靠单目摄像头的3D目标检测还是非常值得研究的。
本作有以下几个贡献点:

  • 提出了一个one-stage单目3D检测方法,思路简答,且end-to-end。
  • 3D框8个角点的计算使用了多种方式得到,每种方式都参与了loss的计算,使训练更容易收敛。
  • 在KITTI数据集上达到了SOTA。

Detection Problem


在这里插入图片描述

SMOKE Approach

在这里插入图片描述


Backbone

主干网络选择使用DLA-34,其中部分卷积换成了DCN,最后的输出相对于原始图4次下采样的特征图。论文还将BN换成了GN(GroupNorm),因为GN对batch size的大小不那么敏感,且在训练中对噪声更鲁棒。

3D Detection Network

head部分一共两条分支,一条用于检测目标中心点位置同时分类,另一条回归目标的3D信息。

Keypoint Branch

中心点的估计与CenterNet那片论文的思路相似,不同的是CenterNet里用的是2D框的中心点,而这里用的是3D框的中心点在图像上的投影点,如下图所示:
在这里插入图片描述

Regression Branch

在这里插入图片描述

根据深度信息,投影点(x,y)坐标,和相机参数,可计算得到3D中心点坐标

在这里插入图片描述
在这里插入图片描述

预测长宽高,有点像anchor的思想

在这里插入图片描述

偏航角:ray到Z轴角度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Loss Function

偏航角pred与尺寸gt,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸pred,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸gt,坐标pred构成的3d box与gt的回归loss

Keypoint Classification分支的loss跟CenterNet中一样,用的是focal loss。

Regression分支的loss计算比较有新意,没有采取直接计算τ \tauτ中8个参数的loss,而是通过在角度、尺寸、坐标位置三种分支下得到的3D框的8个角点去和真值比较计算loss。

总loss:
在这里插入图片描述

# mmdetection3d/mmdet3d/models/dense_heads/smoke_mono3d_head.py
# 角度分支下计算得到的3D框,所谓角度分支即只有角度用的是预测值,而坐标位置和尺寸两个用的是真值
bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, orientations, img_metas)
# 尺寸分支下计算得到的3D框
bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, gt_orientations, img_metas)
# 坐标位置分支下计算得到的3D框
bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, gt_orientations, img_metas)
...
...
# 三种分支下分别计算推理出的8个角点的和真值8个角点的loss
loss_bbox_oris = self.loss_bbox(pred_bboxes['ori'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_dims = self.loss_bbox(pred_bboxes['dim'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_locs = self.loss_bbox(pred_bboxes['loc'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris

Conclusion


纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

参考:https://blog.csdn.net/qq_30483585/article/details/124954023

相关文章:

【单目3D检测】smoke(1):模型方案详解

纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。 题目:SMOKE&…...

数据库系统概论:数据库系统的锁机制

引言 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,数据作为一种共享资源,其并发访问的一致性和有效性是数据库必须解决的问题。锁机制通过对数据库中的数据对象(如表、行等)进行加锁,以确保在同…...

Django+vue自动化测试平台(28)-- ADB获取设备信息

概述 adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb可以在Eclipse中通过DDMS来调试Android程序,说白了就是调试工具。 adb的工作方式比较特殊,采用监听Socket TCP 5554等端口的方式让IDE和Qemu通讯,默认情况下…...

RESTful API设计指南:构建高效、可扩展和易用的API

文章目录 引言一、RESTful API概述1.1 什么是RESTful API1.2 RESTful API的重要性 二、RESTful API的基本原则2.1 资源导向设计2.2 HTTP方法的正确使用 三、URL设计3.1 使用名词而非动词3.2 使用复数形式表示资源集合 四、请求和响应设计4.1 HTTP状态码4.2 响应格式4.2.1 响应实…...

npm下载的依赖包版本号怎么看

npm下载的依赖包版本号怎么看 版本号一般分三个部分,主版本号、次版本号、补丁版本号。 主版本号:一般依赖包发生重大更新时,主版本号才回发生变化,如Vue2.x到Vue3.x。次版本号:当依赖包中发生了一些小变化&#xff…...

css前端面试题

1.什么是css盒子模型? 盒子模型包含了元素内容(content)、内边距(padding)、边框(border)、外边距(margin)几个要素。 标准盒子模型和IE盒子模型的区别在于其对元素的w…...

Vue从零到实战

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...

【Chatgpt大语言模型医学领域中如何应用】

随着人工智能技术 AI 的不断发展和应用,ChatGPT 作为一种强大的自然语言处理技术,无论是 自然语言处理、对话系统、机器翻译、内容生成、图像生成,还是语音识别、计算机视觉等方面,ChatGPT 都有着广泛的应用前景。特别在临床医学领…...

ES6 正则的扩展(十九)

1. 正则表达式字面量改进 特性:在 ES6 中,正则表达式字面量允许在字符串中使用斜杠(/)作为分隔符。 用法:简化正则表达式的书写。 const regex1 /foo/; const regex2 /foo/g; // 全局搜索2. u 修饰符(U…...

<数据集>钢铁缺陷检测数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:1800张 标注数量(xml文件个数):1800 标注数量(txt文件个数):1800 标注类别数:6 标注类别名称:[crazing, patches, inclusion, pitted_surface, rolled-in_scale, scr…...

Kafka系列之:Kafka存储数据相关重要参数理解

Kafka系列之:Kafka存储数据相关重要参数理解 一、log.segment.bytes二、log.retention.bytes三、日志段四、log.retention.check.interval.ms五、数据底层文件六、index、log、snapshot、timeindex、leader-epoch-checkpoint、partition.metadata一、log.segment.bytes 参数lo…...

Template execution failed: ReferenceError: name is not defined

问题 我们使用了html-webpack-plugin(webpack)进行编译html,导致的错误。 排查结果 连接地址 html-webpack-plugin版本低(2.30.1),html模板里面不能有符号,注释都不行 // var reg new RegExp((^|&)${name}([^&…...

CVE-2024-24549 Apache Tomcat - Denial of Service

https://lists.apache.org/thread/4c50rmomhbbsdgfjsgwlb51xdwfjdcvg Apache Tomcat输入验证错误漏洞,HTTP/2请求的输入验证不正确,会导致拒绝服务,可以借助该漏洞攻击服务器。 https://mvnrepository.com/artifact/org.apache.tomcat.embed/…...

Linux下如何安装配置Graylog日志管理工具

Graylog是一个开源的日志管理工具,可以帮助我们收集、存储和分析大量的日志数据。它提供了强大的搜索、过滤和可视化功能,可以帮助我们轻松地监控系统和应用程序的运行情况。 在Linux系统下安装和配置Graylog主要包括以下几个步骤: 准备安装…...

「MQTT over QUIC」与「MQTT over TCP」与 「TCP 」通信测试报告

一、结论 在实车5G测试中「MQTT Over QUIC」整体表现优于「TCP」,可在系统架构升级时采用MQTT Over QUIC替换原有的TCP通讯;从实现原理上基于QUIC比基于TCP在弱网、网络抖动导致频繁重连场景延迟更低。 二、测试方案 网络类型:实车5G、实车…...

获取磁盘剩余容量-----c++

获取磁盘剩余容量 #include <filesystem>struct DiskSpaceInfo {double total;double free;double available; };DiskSpaceInfo getDiskSpace(const std::string& path) {std::filesystem::space_info si std::filesystem::space(path);DiskSpaceInfo info;info.…...

AI算法24-决策树C4.5算法

目录 决策树C4.5算法概述 决策树C4.5算法简介 决策树C4.5算法发展历史 决策树C4.5算法原理 信息熵&#xff08;Information Entropy&#xff09; 信息增益&#xff08;Information Gain&#xff09; 信息增益比&#xff08;Gain Ratio&#xff09; 决策树C4.5算法改进 …...

【云原生】Prometheus整合Alertmanager告警规则使用详解

目录 一、前言 二、Altermanager概述 2.1 什么是Altermanager 2.2 Altermanager使用场景 三、Altermanager架构与原理 3.1 Altermanager使用步骤 3.2 Altermanager工作机制 3.3 Altermanager在Prometheus中的位置 四、Altermanager部署与接入Prometheus 4.1 Altermana…...

C++ :友元类

友元类的概念和使用 (1)将类A声明为B中的friend class后&#xff0c;则A中所有成员函数都成为类B的友元函数了 (2)代码实战&#xff1a;友元类的定义和使用友元类是单向的 (3)友元类是单向的&#xff0c;代码实战验证 互为友元类 (1)2个类可以互为友元类&#xff0c;代码实战…...

【整理了一些关于使用swoole使用的解决方案】

目录 如何监控和分析 Swoole 服务器的性能瓶颈&#xff1f; 在进行 Swoole 服务器性能优化时&#xff0c;有哪些常见的错误和陷阱需要避免&#xff1f; 除了 Swoole&#xff0c;还有哪些 PHP 框架或技术可以用于构建高并发的 Web 应用&#xff1f; Swoole 同步请求在高并发…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...