【单目3D检测】smoke(1):模型方案详解
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。
- 题目:SMOKE:Single-Stage Monocular 3D Object Detection via Keypoint Estimation
- 代码:https://github.com/lzccccc/SMOKE
Introduction
2D目标检测目前已经在精度和速度上都取得了不错的成绩,而3D目标检测由于需要同时估计出目标的位置与姿态,因此相比2D是一个更具挑战的方向。
目前性能最好的3D目标检测还是需要依赖激光雷达的点云或者点云+图像融合,考虑到成本因素,仅依靠单目摄像头的3D目标检测还是非常值得研究的。
本作有以下几个贡献点:
- 提出了一个one-stage单目3D检测方法,思路简答,且end-to-end。
- 3D框8个角点的计算使用了多种方式得到,每种方式都参与了loss的计算,使训练更容易收敛。
- 在KITTI数据集上达到了SOTA。
Detection Problem
SMOKE Approach
Backbone
主干网络选择使用DLA-34,其中部分卷积换成了DCN,最后的输出相对于原始图4次下采样的特征图。论文还将BN换成了GN(GroupNorm),因为GN对batch size的大小不那么敏感,且在训练中对噪声更鲁棒。
3D Detection Network
head部分一共两条分支,一条用于检测目标中心点位置同时分类,另一条回归目标的3D信息。
Keypoint Branch
中心点的估计与CenterNet那片论文的思路相似,不同的是CenterNet里用的是2D框的中心点,而这里用的是3D框的中心点在图像上的投影点,如下图所示:
Regression Branch
根据深度信息,投影点(x,y)坐标,和相机参数,可计算得到3D中心点坐标
预测长宽高,有点像anchor的思想
偏航角:ray到Z轴角度
Loss Function
偏航角pred与尺寸gt,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸pred,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸gt,坐标pred构成的3d box与gt的回归loss
Keypoint Classification分支的loss跟CenterNet中一样,用的是focal loss。
Regression分支的loss计算比较有新意,没有采取直接计算τ \tauτ中8个参数的loss,而是通过在角度、尺寸、坐标位置三种分支下得到的3D框的8个角点去和真值比较计算loss。
总loss:
# mmdetection3d/mmdet3d/models/dense_heads/smoke_mono3d_head.py
# 角度分支下计算得到的3D框,所谓角度分支即只有角度用的是预测值,而坐标位置和尺寸两个用的是真值
bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, orientations, img_metas)
# 尺寸分支下计算得到的3D框
bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, gt_orientations, img_metas)
# 坐标位置分支下计算得到的3D框
bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, gt_orientations, img_metas)
...
...
# 三种分支下分别计算推理出的8个角点的和真值8个角点的loss
loss_bbox_oris = self.loss_bbox(pred_bboxes['ori'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_dims = self.loss_bbox(pred_bboxes['dim'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox_locs = self.loss_bbox(pred_bboxes['loc'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris
Conclusion
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。
参考:https://blog.csdn.net/qq_30483585/article/details/124954023
相关文章:

【单目3D检测】smoke(1):模型方案详解
纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。 题目:SMOKE&…...

数据库系统概论:数据库系统的锁机制
引言 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,数据作为一种共享资源,其并发访问的一致性和有效性是数据库必须解决的问题。锁机制通过对数据库中的数据对象(如表、行等)进行加锁,以确保在同…...
Django+vue自动化测试平台(28)-- ADB获取设备信息
概述 adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb可以在Eclipse中通过DDMS来调试Android程序,说白了就是调试工具。 adb的工作方式比较特殊,采用监听Socket TCP 5554等端口的方式让IDE和Qemu通讯,默认情况下…...

RESTful API设计指南:构建高效、可扩展和易用的API
文章目录 引言一、RESTful API概述1.1 什么是RESTful API1.2 RESTful API的重要性 二、RESTful API的基本原则2.1 资源导向设计2.2 HTTP方法的正确使用 三、URL设计3.1 使用名词而非动词3.2 使用复数形式表示资源集合 四、请求和响应设计4.1 HTTP状态码4.2 响应格式4.2.1 响应实…...
npm下载的依赖包版本号怎么看
npm下载的依赖包版本号怎么看 版本号一般分三个部分,主版本号、次版本号、补丁版本号。 主版本号:一般依赖包发生重大更新时,主版本号才回发生变化,如Vue2.x到Vue3.x。次版本号:当依赖包中发生了一些小变化ÿ…...
css前端面试题
1.什么是css盒子模型? 盒子模型包含了元素内容(content)、内边距(padding)、边框(border)、外边距(margin)几个要素。 标准盒子模型和IE盒子模型的区别在于其对元素的w…...

Vue从零到实战
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...

【Chatgpt大语言模型医学领域中如何应用】
随着人工智能技术 AI 的不断发展和应用,ChatGPT 作为一种强大的自然语言处理技术,无论是 自然语言处理、对话系统、机器翻译、内容生成、图像生成,还是语音识别、计算机视觉等方面,ChatGPT 都有着广泛的应用前景。特别在临床医学领…...
ES6 正则的扩展(十九)
1. 正则表达式字面量改进 特性:在 ES6 中,正则表达式字面量允许在字符串中使用斜杠(/)作为分隔符。 用法:简化正则表达式的书写。 const regex1 /foo/; const regex2 /foo/g; // 全局搜索2. u 修饰符(U…...

<数据集>钢铁缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:1800张 标注数量(xml文件个数):1800 标注数量(txt文件个数):1800 标注类别数:6 标注类别名称:[crazing, patches, inclusion, pitted_surface, rolled-in_scale, scr…...
Kafka系列之:Kafka存储数据相关重要参数理解
Kafka系列之:Kafka存储数据相关重要参数理解 一、log.segment.bytes二、log.retention.bytes三、日志段四、log.retention.check.interval.ms五、数据底层文件六、index、log、snapshot、timeindex、leader-epoch-checkpoint、partition.metadata一、log.segment.bytes 参数lo…...

Template execution failed: ReferenceError: name is not defined
问题 我们使用了html-webpack-plugin(webpack)进行编译html,导致的错误。 排查结果 连接地址 html-webpack-plugin版本低(2.30.1),html模板里面不能有符号,注释都不行 // var reg new RegExp((^|&)${name}([^&…...

CVE-2024-24549 Apache Tomcat - Denial of Service
https://lists.apache.org/thread/4c50rmomhbbsdgfjsgwlb51xdwfjdcvg Apache Tomcat输入验证错误漏洞,HTTP/2请求的输入验证不正确,会导致拒绝服务,可以借助该漏洞攻击服务器。 https://mvnrepository.com/artifact/org.apache.tomcat.embed/…...

Linux下如何安装配置Graylog日志管理工具
Graylog是一个开源的日志管理工具,可以帮助我们收集、存储和分析大量的日志数据。它提供了强大的搜索、过滤和可视化功能,可以帮助我们轻松地监控系统和应用程序的运行情况。 在Linux系统下安装和配置Graylog主要包括以下几个步骤: 准备安装…...

「MQTT over QUIC」与「MQTT over TCP」与 「TCP 」通信测试报告
一、结论 在实车5G测试中「MQTT Over QUIC」整体表现优于「TCP」,可在系统架构升级时采用MQTT Over QUIC替换原有的TCP通讯;从实现原理上基于QUIC比基于TCP在弱网、网络抖动导致频繁重连场景延迟更低。 二、测试方案 网络类型:实车5G、实车…...
获取磁盘剩余容量-----c++
获取磁盘剩余容量 #include <filesystem>struct DiskSpaceInfo {double total;double free;double available; };DiskSpaceInfo getDiskSpace(const std::string& path) {std::filesystem::space_info si std::filesystem::space(path);DiskSpaceInfo info;info.…...

AI算法24-决策树C4.5算法
目录 决策树C4.5算法概述 决策树C4.5算法简介 决策树C4.5算法发展历史 决策树C4.5算法原理 信息熵(Information Entropy) 信息增益(Information Gain) 信息增益比(Gain Ratio) 决策树C4.5算法改进 …...

【云原生】Prometheus整合Alertmanager告警规则使用详解
目录 一、前言 二、Altermanager概述 2.1 什么是Altermanager 2.2 Altermanager使用场景 三、Altermanager架构与原理 3.1 Altermanager使用步骤 3.2 Altermanager工作机制 3.3 Altermanager在Prometheus中的位置 四、Altermanager部署与接入Prometheus 4.1 Altermana…...

C++ :友元类
友元类的概念和使用 (1)将类A声明为B中的friend class后,则A中所有成员函数都成为类B的友元函数了 (2)代码实战:友元类的定义和使用友元类是单向的 (3)友元类是单向的,代码实战验证 互为友元类 (1)2个类可以互为友元类,代码实战…...
【整理了一些关于使用swoole使用的解决方案】
目录 如何监控和分析 Swoole 服务器的性能瓶颈? 在进行 Swoole 服务器性能优化时,有哪些常见的错误和陷阱需要避免? 除了 Swoole,还有哪些 PHP 框架或技术可以用于构建高并发的 Web 应用? Swoole 同步请求在高并发…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...