当前位置: 首页 > news >正文

【人工智能】机器学习 -- 决策树(乳腺肿瘤数)

目录

一、使用Python开发工具,运行对iris数据进行分类的例子程序dtree.py,熟悉sklearn机器实习开源库。

二、登录https://archive-beta.ics.uci.edu/

三、使用sklearn机器学习开源库,使用决策树对breast-cancer-wisconsin.data进行分类。

1. Python代码

2. 运行截图


一、使用Python开发工具,运行对iris数据进行分类的例子程序dtree.py,熟悉sklearn机器实习开源库。

导入相应的库并运行dtree.py,由于sklearn库里面已经有iris数据了,故不需要另外下载。

1. dtree.py

# import inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import tree
import matplotlib# %matplotlib inline# 生成所有测试样本点
def make_meshgrid(x, y, h=.02):x_min, x_max = x.min() - 1, x.max() + 1y_min, y_max = y.min() - 1, y.max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))return xx, yy# 对测试样本进行预测,并显示
def plot_test_results(ax, clf, xx, yy, **params):Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)ax.contourf(xx, yy, Z, **params)# 载入iris数据集
iris = datasets.load_iris()
# 只使用前面连个特征
X = iris.data[:, :2]
# 样本标签值
y = iris.target# 创建并训练决策树
clf = tree.DecisionTreeClassifier()
clf.fit(X, y)# 打印决策树
tree.plot_tree(clf)title = 'DecisionTreeClassifier'fig, ax = plt.subplots(figsize=(5, 5))
plt.subplots_adjust(wspace=0.4, hspace=0.4)X0, X1 = X[:, 0], X[:, 1]
# 生成所有测试样本点
xx, yy = make_meshgrid(X0, X1)# 显示测试样本的分类结果
plot_test_results(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
# 显示训练样本
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())  # 设置x轴坐标的范围,范围由测试样本的最小和最大值确定
ax.set_ylim(yy.min(), yy.max())  # 设置y轴坐标的范围
ax.set_xlabel('x1')  # 设置x轴的标签为'x1'
ax.set_ylabel('x2')  # 设置y轴的标签为'x2'
ax.set_xticks(())  # 将x轴的刻度设置为空,即不显示刻度
ax.set_yticks(())  # 将y轴的刻度设置为空,即不显示刻度
ax.set_title(title)  # 设置图形的标题为title变量的值
plt.show()

2. 运行截图

二、登录https://archive-beta.ics.uci.edu/

可以查看提供的各类公共数据源,找到Breast Cancer Wisconsin (Original)数据并下载。

也可以直接输入网址:

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/

下载wisconsin提供的乳腺肿瘤数breast-cancer-wisconsin.data(已经处理好的数据)和breast-cancer-wisconsin.names(对数据的说明,可以用写字体打开)

在我上传的资源可以免费下载!!解压即可用!!【在本文置顶

下载后的数据如下:

三、使用sklearn机器学习开源库,使用决策树对breast-cancer-wisconsin.data进行分类。

Sklearn库里面已经有乳腺癌数据了,直接加载数据集。

1. Python代码

2. 运行截图

相关文章:

【人工智能】机器学习 -- 决策树(乳腺肿瘤数)

目录 一、使用Python开发工具,运行对iris数据进行分类的例子程序dtree.py,熟悉sklearn机器实习开源库。 二、登录https://archive-beta.ics.uci.edu/ 三、使用sklearn机器学习开源库,使用决策树对breast-cancer-wisconsin.data进行分类。 …...

【proteus经典实战】LCD滚动显示汉字

一、简介 Proteus是一款功能丰富的电子设计和仿真软件,它允许用户设计电路图、进行PCB布局,并在虚拟环境中测试电路功能。这款软件广泛应用于教育和产品原型设计,特别适合于快速原型制作和电路设计教育。Proteus的3D可视化功能使得设计更加直…...

数据结构复习1

1、什么是集合? 就是一组数据的集合体,就像篮子装着苹果、香蕉等等,这些“水果”就代表数据,“篮子”就是这个集合。 集合的特点: 集合用于存储对象。 对象是确定的个数可以用数组,如果不确定可以用集合…...

订单管理系统需求规范

1. 引言 1.1 目的 本文档旨在明确描述订单管理系统的功能、非功能性需求以及约束条件,以指导系统的分析、设计、开发、测试和部署。 1.2 范围 本系统将支持在线订单处理,从客户下单到完成配送的全过程管理,包括库存管理、支付处理、订单跟…...

swiftui使用ScrollView实现左右滑动和上下滑动的效果,仿小红书页面

实现的效果如果所示,顶部的关注用户列表可以左右滑动,中间的内容区域是可以上下滚动的效果,点击顶部的toolbar也可以切换关注/发现/附近不同页面,实现翻页效果。 首页布局 这里使用了NavigationStack组件和tabViewStyle样式配置…...

深入理解并使用 MySQL 的 SUBSTRING_INDEX 函数

引言 在处理字符串数据时,经常需要根据特定的分隔符来分割字符串或提取字符串的特定部分。MySQL 提供了一个非常有用的函数 SUBSTRING_INDEX 来简化这类操作。本文将详细介绍 SUBSTRING_INDEX 的使用方法、语法,以及通过实际案例来展示其在数据库查询中…...

elementUI在手机端使用遇到的问题总结

之前的博客有写过用vue2elementUI封装手机端选择器picker组件,支持单选、多选、远程搜索多选,最终真机调试的时候发现有很多细节样式需要调整。此篇博客记录下我调试过程中遇到的问题和解决方法。 一、手机真机怎么连电脑本地代码调试? 1.确…...

【初阶数据结构】5.栈和队列

文章目录 1.栈1.1 概念与结构1.2 栈的实现2.队列2.1 概念与结构2.2 队列的实现3.栈和队列算法题3.1 有效的括号3.2 用队列实现栈3.3 用栈实现队列3.4 设计循环队列 1.栈 1.1 概念与结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操…...

高通Android 12 设置Global属性为null问题

1、最近在做app调用framework.jar需求&#xff0c;尝试在frameworks/base/packages/SettingsProvider/res/values/defaults.xml增加属性 <integer name"def_xxxxx">1</integer> 2、在frameworks\base\packages\SettingsProvider\src\com\android\provide…...

Xcode代码静态分析:构建无缺陷代码的秘诀

Xcode代码静态分析&#xff1a;构建无缺陷代码的秘诀 在软件开发过程中&#xff0c;代码质量是至关重要的。Xcode作为Apple的官方集成开发环境&#xff08;IDE&#xff09;&#xff0c;提供了强大的代码静态分析工具&#xff0c;帮助开发者在编写代码时发现潜在的错误和问题。…...

Qt各个版本安装的保姆级教程

文章目录 前言Qt简介下载Qt安装包安装Qt找到Qt的快捷方式总结 前言 Qt是一款跨平台的C图形用户界面应用程序开发框架&#xff0c;广泛应用于桌面软件、嵌入式软件、移动应用等领域。Qt的强大之处在于其高度的模块化和丰富的工具集&#xff0c;可以帮助开发者快速、高效地构建出…...

数学建模--优劣解距离法TOPSIS

目录 简介 TOPSIS法的基本步骤 延伸 优劣解距离法&#xff08;TOPSIS&#xff09;的历史发展和应用领域有哪些&#xff1f; 历史发展 应用领域 如何准确计算TOPSIS中的理想解&#xff08;PIS&#xff09;和负理想解&#xff08;NIS&#xff09;&#xff1f; TOPSIS方法在…...

Springboot开发之 Excel 处理工具(三) -- EasyPoi 简介

引言 Springboot开发之 Excel 处理工具&#xff08;一&#xff09; – Apache POISpringboot开发之 Excel 处理工具&#xff08;二&#xff09;-- Easyexcel EasyPoi是一款基于 Apache POI 的高效 Java 工具库&#xff0c;专为简化 Excel 和 Word 文档的操作而设计。以下是对…...

【BUG】已解决:python setup.py bdist_wheel did not run successfully.

已解决&#xff1a;python setup.py bdist_wheel did not run successfully. 目录 已解决&#xff1a;python setup.py bdist_wheel did not run successfully. 【常见模块错误】 解决办法&#xff1a; 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主…...

Java 中如何支持任意格式的压缩和解压缩

&#x1f446;&#x1f3fb;&#x1f446;&#x1f3fb;&#x1f446;&#x1f3fb;关注博主&#xff0c;让你的代码变得更加优雅。 前言 Hutool 是一个小而全的Java工具类库&#xff0c;通过静态方法封装&#xff0c;降低相关API的学习成本&#xff0c;提高工作效率&#xf…...

从零开始实现大语言模型(八):Layer Normalization

1. 前言 Layer Normalization是深度学习实践中已经被证明非常有效的一种解决梯度消失或梯度爆炸问题,以提升神经网络训练效率及稳定性的方法。OpenAI的GPT系列大语言模型使用Layer Normalization对多头注意力模块,前馈神经网络模块以及最后的输出层的输入张量做变换,使shap…...

<数据集>混凝土缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;7353张 标注数量(xml文件个数)&#xff1a;7353 标注数量(txt文件个数)&#xff1a;7353 标注类别数&#xff1a;6 标注类别名称&#xff1a;[exposed reinforcement, rust stain, Crack, Spalling, Efflorescence…...

【LabVIEW作业篇 - 3】:数组相加、for循环创建二位数组、数组练习(求最大最小值、平均值、中位数、提取范围内的数据、排序)

文章目录 数组相加for循环实现直接使用加函数 for循环创建二位数组数组练习 数组相加 要求&#xff1a;用两种方法实现两个数组相加 for循环实现 在前面板中分别创建两个数值类型的一维数组&#xff0c;并设置相应的值&#xff0c;然后在程序框图中创建一个for循环&#xff…...

Unity动画系统(4)

6.3 动画系统高级1-1_哔哩哔哩_bilibili p333- 声音组件添加 using System.Collections; using System.Collections.Generic; using UnityEngine; public class RobotAnimationController : MonoBehaviour { [Header("平滑过渡时间")] [Range(0,3)] publ…...

React基础学习-Day08

React基础学习-Day08 React生命周期&#xff08;旧&#xff09;&#xff08;新&#xff09;&#xff08;函数组件&#xff09; &#xff08;旧&#xff09; 在 React 16 版本之前&#xff0c;React 使用了一套不同的生命周期方法。这些生命周期方法在 React 16 中仍然可以使用…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...