当前位置: 首页 > news >正文

Opencv学习项目3——人脸识别

之前我们获取了一张图像的人脸信息,现在我们来使用特征点分析来匹配两张lyf照片的相似度

获取两张图片的人脸信息

import cv2
import face_recognition# 加载图像文件
img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
#框出人脸
cv2.rectangle(img1, (faceloc1[3], faceloc1[0]), (faceloc1[1], faceloc1[2]), (0, 255, 0), 3)
cv2.rectangle(img2, (faceloc2[3], faceloc2[0]), (faceloc2[1], faceloc2[2]), (0, 255, 0), 3)#打印人脸位置信息
print(faceloc1)
print(faceloc2)cv2.imshow('lyf1', img1)
cv2.imshow('lyf2', img2)
cv2.waitKey(0)

效果如下

然后接下来我们使用face_encodings来进行提取人脸特征编码,首先我们先对这个函数进行一下介绍

face_encodings函数

face_recognition.face_encodings() 是 face_recognition 库中的一个函数,用于从图像中提取人脸的特征编码。这些编码是对人脸图像的数值化描述,可以用来比较不同人脸之间的相似度,从而进行人脸识别或验证。

face_encodings(face_image, known_face_locations=None, num_jitters=1)

  • face_image: 必须是一个RGB图像(numpy数组),即使是从OpenCV加载的图像也需要先转换为RGB格式。

  • known_face_locations: 可选参数,指定人脸位置的列表。每个位置是一个包含四个整数的元组 (top, right, bottom, left),代表人脸框的坐标。如果不提供此参数,函数将自动检测图像中的所有人脸。

  • num_jitters: 可选参数,默认为1。用于增加对每个人脸提取特征时的采样次数,以获得更稳定的编码。较大的值可能会提高准确性,但会增加计算成本。

  • 返回值:

    该函数返回一个包含每个检测到的人脸编码的列表。每个编码是一个128维的numpy数组,描述了人脸在128维空间中的位置关系和特征。

face_recognition.face_encodings() 可以结合 face_recognition.face_locations() 使用,以便首先检测人脸位置,然后提取这些位置上的人脸编码。

人脸编码是一个具有良好特性的向量,可以用于比较两张人脸图像的相似度。通常,人脸编码越相似,它们之间的距离(如欧氏距离)越小。

该函数在进行人脸识别、人脸验证和人脸聚类等任务时非常有用。

这样我们使用faceloc1 = face_recognition.face_locations(img1)[0]

face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]

这里就表示获取第一个人脸的特征编码

img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
# 提取人脸编码
face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]
face_encoding2 = face_recognition.face_encodings(img2, [faceloc2])[0]

下面我们使用compare_faces来对比两个图片人脸的相似度,介绍一下这个函数

compare_faces函数

face_recognition.compare_faces([face_encoding1], face_encoding2) 是一个用于人脸比对的函数,通常用于人脸识别任务中。这个函数接受两个参数:

  • face_encoding1: 表示第一个人脸的编码,通常是一个128维的向量,用于表示人脸的特征。
  • face_encoding2: 表示第二个人脸的编码,同样是一个128维的向量。

函数的作用是比较这两个人脸编码,判断它们是否来自同一个人脸。具体来说,它会计算这两个人脸编码之间的欧氏距离(Euclidean distance),如果距离小于一个阈值(一般来说是0.6),就认为这两个人脸是同一个人,返回True;否则返回False。

import cv2
import face_recognition# 加载图像文件
img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
# 提取人脸编码
face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]
face_encoding2 = face_recognition.face_encodings(img2, [faceloc2])[0]
#框出人脸
cv2.rectangle(img1, (faceloc1[3], faceloc1[0]), (faceloc1[1], faceloc1[2]), (0, 255, 0), 3)
cv2.rectangle(img2, (faceloc2[3], faceloc2[0]), (faceloc2[1], faceloc2[2]), (0, 255, 0), 3)
#比对人脸特征
res = face_recognition.compare_faces([face_encoding1],face_encoding2)
print(res)
#打印人脸位置信息
# print(faceloc1)
# print(faceloc2)cv2.imshow('lyf1', img1)
cv2.imshow('lyf2', img2)
cv2.waitKey(0)

效果如下

这里可以看见,打印了True,说明为同一个人

到这里就完成了对两个人脸的比对,感兴趣的可以关注一下,谢谢

相关文章:

Opencv学习项目3——人脸识别

之前我们获取了一张图像的人脸信息,现在我们来使用特征点分析来匹配两张lyf照片的相似度 获取两张图片的人脸信息 import cv2 import face_recognition# 加载图像文件 img1 face_recognition.load_image_file(lyf1.png) img2 face_recognition.load_image_file(l…...

【js自学打卡11】生成器函数(generator函数)的使用总结+代码举例

力扣的js入门免费题刷完了,开始自己找题练练,顺便捡捡知识点 力扣2649 1.思路 一眼递归,但事实证明也可以直接flat手撕。 arr.flat(Infinity) //直接扁平化到最底层涉及到了一些关于生成器和异步编程相关的知识点,学一下。 2.…...

深入了解jdbc-02-CRUD

文章目录 操作和访问数据库Statement操作数据表的弊端sql注入问题PreparedStatement类ResultSet类与ResultSetMetaData类资源的释放批量插入 操作和访问数据库 数据库的调用的不同方式: Statement:用于执行静态 SQL 语句并返回它所生成结果的对象。PreparedStatem…...

《基于 Kafka + Quartz 实现时限质控方案》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...

浏览器的卡顿与react的解决思路

以下内容是阅读过程中结合自己的思考而诞生的产物,不一定准确,但相反的,可能个人对实际情况有很大的误解。 仅做参考,欢迎指正。 前面提到浏览器显示的其实是渲染流程最后渲染出来的一张图片,而一个行为引起的副作用需…...

XXE:XML外部实体引入

XXE漏洞 如果服务器没有对客户端的xml数据进行限制,且版本较低的情况下,就可能会产生xxe漏洞 漏洞利用流程 1.客户端发送xml文件,其中dtd存在恶意的外部实体引用 2.服务器进行解析 3.服务器返回实体引用内容 危害:任意文件读…...

3D培训大师创新培训体验,加速空调关键组件的高效精准安装

如今,空调系统的复杂性和精密性与日俱增,对专业技术人员的要求也日益提高。尤其是决定空调是否能平稳运行的空调关键组件的装配培训,不再局限于传统的理论讲解和实体模型演示,而是更注重数字化、沉浸式学习。 案例背景 某空调公…...

PyTorch 深度学习实践-循环神经网络(高级篇)

视频指路 参考博客笔记 参考笔记二 文章目录 上课笔记总代码练习 上课笔记 个人能力有限,重看几遍吧,第一遍基本看不懂 名字的每个字母都是一个特征x1,x2,x3…,一个名字是一个序列 rnn用GRU 用ASCII表作为词典,长度为128&#x…...

这才是老板喜欢的电子信息类简历

点击可直接使用...

MySQL学习之事务,锁机制

事务 什么是事务? 事务就是逻辑上的一组操作,要么全做,要么全不做 事务经典例子:转账,转账需要两个操作,从一个人账户上减钱,在另一个账户上加钱,比如说小红给小明转账100元&…...

开源知识付费小程序源码 内容付费系统php源码 含完整图文部署教程

在当今数字化时代,知识付费作为一种新型的经济模式,正逐渐受到越来越多内容创作者、专家及商家的青睐。开源知识付费小程序源码和内容付费系统PHP源码作为实现这一模式的重要工具,为构建高效、安全、可扩展的知识付费平台提供了强大的技术支持…...

时序数据库如何选型?详细指标总结!

工业物联网场景,如何判断什么才是好的时序数据库? 工业物联网将机器设备、控制系统与信息系统、业务过程连接起来,利用海量数据进行分析决策,是智能制造的基础设施,并影响整个工业价值链。工业物联网机器设备感知形成了…...

【前端】JavaScript入门及实战51-55

文章目录 51 函数52 函数的参数53 返回值54 练习55 return 51 函数 <!DOCTYPE html> <html> <head> <title></title> <meta charset "utf-8"> <script type"text/javascript">/* 函数&#xff1a;1. 函数也是…...

【引领未来智造新纪元:量化机器人的革命性应用】

在日新月异的科技浪潮中&#xff0c;量化机器人正以其超凡的智慧与精准的操作&#xff0c;悄然改变着各行各业的生产面貌&#xff0c;成为推动产业升级、提升竞争力的关键力量。今天&#xff0c;让我们一同探索量化机器人在不同领域的广泛应用价值&#xff0c;见证它如何以科技…...

山东航空小程序查询

山东航空小程序 1) 请求地址 https://scxcx.sda.cn/mohe/proxy?url/trp/ticket/search 2) 调用方式&#xff1a;HTTP post 3) 接口描述&#xff1a; 接口描述详情 4) 请求参数: {"dep": "TAO","arr": "HRB","flightDate&qu…...

MySQL添加索引时会锁表吗?

目录 简介Online DDL概念Online DDL用法总结 简介 在MySQL5.5以及之前的版本&#xff0c;通常更改数据表结构操作&#xff08;DDL&#xff09;会阻塞对表数据的增删改操作&#xff08;DML&#xff09;。 MySQL5.6提供Online DDL之后可支持DDL与DML操作同时执行&#xff0c;降低…...

算法日记day 16(二叉树的广度优先遍历|反转、对称二叉树)

一、二叉树的层序遍历 题目&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3]…...

PolarisMesh源码系列--Polaris-Go注册发现流程

导语 北极星是腾讯开源的一款服务治理平台&#xff0c;用来解决分布式和微服务架构中的服务管理、流量管理、配置管理、故障容错和可观测性问题。在分布式和微服务架构的治理领域&#xff0c;目前国内比较流行的还包括 Spring Cloud&#xff0c;Apache Dubbo 等。在 Kubernete…...

vue3 vxe-grid修改currentPage,查询数据的时候,从第一页开始查询

1、当我们设置好VxeGrid.Options进行数据查询的时候,下面是可能的设置&#xff1a; const gridOptions reactive<BasicTableProps>({id: UserTable,showHeaderOverflow: false,showOverflow: true,keepSource: true,columns: userColumns,size: small,pagerConfig: {cur…...

电商数据集成之电商商品信息采集系统架构设计||电商API接口

一、引言 本架构设计文档旨在阐述基于 Selenium 的电商商品信息采集系统的整体架构&#xff0c;包括系统视图、逻辑视图、物理视图、开发视图和进程视图&#xff0c;并提供一个简单的采集电商商品信息的 demo。该系统通过模拟浏览器行为&#xff0c;实现对电商商品信息的自…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...