当前位置: 首页 > news >正文

AVL树的理解和实现[C++]

文章目录

  • AVL树
    • AVL树的规则或原理
  • AVL树的实现
    • 1.节点的定义
    • 2.功能和接口等的实现
      • 默认构造函数,析构函数
      • 拷贝构造函数
      • 插入
      • 搜索
      • 打印函数
      • 检查是否为平衡树,检查平衡因子
      • 旋转

AVL树

AVL树,全称Adelson-Velsky和Landis树,是一种自平衡的二叉搜索树。它于1962年由苏联科学家Adelson-Velsky和Landis首次提出。AVL树具有以下特点:树中任一节点的左右子树高度差不超过1,因此AVL树是一种严格平衡的二叉搜索树。在AVL树上进行查找、插入和删除操作的时间复杂度均为O(log n),大大提高了搜索效率。

AVL树的规则或原理

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    在这里插入图片描述如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

AVL树的实现

1.节点的定义

首先,我们定义AVL树的节点结构

template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;//值 AVLTreeNode<K, V>* _left;//该节点的左孩子AVLTreeNode<K, V>* _right;//该节点的右孩子AVLTreeNode<K, V>* _parent;//该节点的父节点int _bf; // balance factor(平衡因子)AVLTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _bf(0){}
};

2.功能和接口等的实现

默认构造函数,析构函数

template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public://默认构造函数,用来初始化AVL树,将根节点置空来表示树是空的AVLTree() = default;//析构函数~AVLTree(){Destroy(_root);_root = nullptr;}
private:void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}
private:Node* _root = nullptr;
};

拷贝构造函数

template<class K, class V>
class AVLTree
{//拷贝构造AVLTree(const AVLTree<K, V>& t){_root = Copy(t._root);}private://用递归来进行赋值AVL树的节点Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newRoot = new Node(root->_key, root->_value);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}private:Node* _root = nullptr;
};

插入

template<class K, class V>
class AVLTree
{	
private:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// 更新平衡因子while (parent){if (cur == parent->_left)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 不平衡了,旋转处理if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{RotateLR(parent);}break;}else{assert(false);}}return true;}private:Node* _root = nullptr;
};

搜索

template<class K, class V>
class AVLTree
{
private:Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}private:Node* _root = nullptr;
};

打印函数

template<class K, class V>
class AVLTree
{void InOrder(){_InOrder(_root);cout << endl;}	
private:void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}
private:Node* _root = nullptr;
};

检查是否为平衡树,检查平衡因子

template<class K, class V>
class AVLTree
{
bool IsBanlanceTree(){return _IsBanlanceTree(_root);}
private://计算平衡因子函数int _Height(Node* root){if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}//判断是否为平衡树的函数bool _IsBanlanceTree(Node* root){//空树返回真if (nullptr == root){return true;}//计算root的平衡因子:即root左右子树高度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;//如果计算出的平衡因子与root的平衡因子不相等//或,root平衡因子的绝对值超过一,则不是AVL树/*if (abs(diff) < 2 || root->_bf != diff){return false;}*/if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}//root的左右都是AVL树那么概述一定是AVL树return _IsBanlanceTree(root->_left) && _IsBanlanceTree(root->_right);}
private:Node* _root = nullptr;
};

旋转

template<class K, class V>
class AVLTree
{void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* parentParent = parent->_parent;csubR->_left = parent;parent->_parent = subR;if (parentParent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}void  RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parentParent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}}
private:Node* _root = nullptr;
};

相关文章:

AVL树的理解和实现[C++]

文章目录 AVL树AVL树的规则或原理 AVL树的实现1.节点的定义2.功能和接口等的实现默认构造函数&#xff0c;析构函数拷贝构造函数插入搜索打印函数检查是否为平衡树&#xff0c;检查平衡因子旋转 AVL树 AVL树&#xff0c;全称Adelson-Velsky和Landis树&#xff0c;是一种自平衡…...

云计算遭遇的主要安全威胁

以下是详细说明云计算遭遇的所有主要安全威胁&#xff1a; 1. 数据泄露 描述&#xff1a;数据泄露是指未经授权的情况下访问和获取敏感数据。云计算环境中的数据泄露通常由于不安全的配置、软件漏洞或内部威胁造成。 案例&#xff1a; Capital One数据泄露&#xff1a;2019…...

[MySQL]02 存储引擎与索引,锁机制,SQL优化

Mysql存储引擎 可插拔式存储引擎 索引是在存储引擎底层上实现的 inno DB MySQL默认存储引擎: inno DB高可靠性和高性能的存储引擎 DML操作遵循ACID模型支持事务行级锁,提高并发访问性能支持外键 约束,保证数据完整性和可靠性 MySAM MySAM是MySQL的早期引擎 特点: 不支持事…...

ld,GNU 链接器介绍以及命令行参数详解

ld&#xff0c;GNU 链接器介绍以及命令行参数详解 当我们使用GCC编译源代码生成可执行程序&#xff0c;经过预处理、汇编、编译、链接四个阶段。 链接器&#xff08;Linker&#xff09;将多个目标文件和库文件链接起来&#xff0c;链接器还解决目标文件之间的符号引用&#xff…...

[web]-反序列化-base64

看到源码 <?php error_reporting(0); class A {public $contents "hello ctfer";function __toString(){if ((preg_match(/^[a-z]/i,$this->contents))) {system("echo $this->contents");return 111;}else{return "...";}} }functi…...

【医学影像】RK3588+FPGA:满足远程诊疗系统8K音视频编解码及高效传输需求

医学影像 提供基于Intel平台、NXP平台、Rockchip平台的核心板、Mini-ITX主板、PICO-ITX主板以及工业整机等计算机硬件。产品板载内存&#xff0c;集成超高清编码/解码视频引擎&#xff0c;具有出色的数据处理能力和图形处理能力&#xff0c;功能高集成&#xff0c;可应用于超声…...

昇思25天学习打卡营第16天|基于MindSpore通过GPT实现情感分类

文章目录 昇思MindSpore应用实践1、基于MindSpore通过GPT实现情感分类GPT 模型&#xff08;Generative Pre-Training&#xff09;简介imdb影评数据集情感分类 2、Tokenizer导入预训练好的GPT3、基于预训练的GPT微调实现情感分类 Reference 昇思MindSpore应用实践 本系列文章主…...

服务器借助笔记本热点WIFI上网

一、同一局域网环境 1、当前环境&#xff0c;已有交换机组网环境&#xff0c;服务器已配置IP信息。 设备ip服务器125.10.100.12交换机125.10.100.0/24笔记本125.10.100.39 2、拓扑图 #mermaid-svg-D4moqMym9i0eeRBm {font-family:"trebuchet ms",verdana,arial,sa…...

开发实战中Git的常用操作

Git基础操作 1.初始化仓库 git init解释&#xff1a;在当前目录中初始化一个新的Git仓库。 2.克隆远程仓库 git clone <repository-url>解释&#xff1a;从远程仓库克隆一个完整的Git仓库到本地。 3.检查当前状态 git status解释&#xff1a;查看当前工作目录的状态…...

python调用chrome浏览器自动化如何选择元素

功能描述&#xff1a;在对话框输入文字&#xff0c;并发送。 注意&#xff1a; # 定位到多行文本输入框并输入内容。在selenium 4版本中&#xff0c;元素定位需要填写父元素和子元素名。 textarea driver.find_element(By.CSS_SELECTOR,textarea.el-textarea__inner) from …...

深入理解JS中的排序

在JavaScript开发中,排序是一项基础而重要的操作。本文将探讨JavaScript中几种常见的排序算法,包括它们的原理、实现方式以及适用场景。 1、冒泡排序 1.1、原理 通过比较相邻两个数的大小,交换位置排序:如果后一个数比前一个数小,则交换两个数的位置,重复这个过程,直…...

Kafka之存储设计

文章目录 1. 分区和副本的存储结构1. 分区和副本的分布2. 存储目录结构3. 文件描述 2. 相关配置3. 数据文件类型4. 数据定位原理LogSegment 类UnifiedLog 类 5. 副本数据同步HW水位线LEO末端偏移量HW更新原理 6. 数据清除 1. 分区和副本的存储结构 在一个多 broker 的 Kafka 集…...

Python面试整理-Python中的函数定义和调用

在Python中,函数是一种封装代码的方式,使得代码模块化和复用性更强。定义和调用函数是Python编程中的基本技能。以下是关于如何在Python中定义和调用函数的详细介绍: 函数定义 函数在Python中使用def关键字进行定义。函数体开始前,通常有一个可选的文档字符串(docstring)…...

HTTP协议、Wireshark抓包工具、json解析、天气爬虫

HTTP超文本传输协议 HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff1a; 全称超文本传输协议&#xff0c;是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 HTTP 协议的重要特点&#xff1a; 一发一收…...

electron项目中实现视频下载保存到本地

第一种方式&#xff1a;用户自定义选择下载地址位置 渲染进程 // 渲染进程// 引入 import { ipcRenderer } from "electron";// 列表行数据下载视频操作&#xff0c;diffVideoUrl 是视频请求地址 handleDownloadClick(row) {if (!row.diffVideoUrl) {this.$message…...

基于chrome插件的企业应用

一、chrome插件技术介绍 1、chrome插件组件介绍 名称 职责 访问权限 DOM访问情况 popup 弹窗页面。即打开形式是通过点击在浏览器右上方的icon&#xff0c;一个弹窗的形式。 注: 展示维度 browser_action:所有页面 page_action:指定页面 可访问绝大部分api 不可以 bac…...

unittest框架和pytest框架区别及示例

unittest框架和pytest框架区别及示例 类型unittest框架pytest框架unittest框架示例pytest框架示例安装python内置的一个单元测试框架,标准库&#xff0c;不需要安装第三方单元测试库&#xff0c;需要安装使用时直接引用 import unittest安装命令&#xff1a;pip3 install pyte…...

IDEA性能优化方法解决卡顿

文章目录 前言一、可以采取以下措施&#xff1a;二、VM Options的参数解释1. 内存设置2. 性能调优3. GC&#xff08;垃圾回收&#xff09;调优4. 调试和诊断5. 其它设置6.设置 VM Options 的步骤&#xff1a; 总结 前言 我们在使用 IntelliJ IDEA的时候有时候会觉得卡顿&#x…...

Mysql集合转多行

mysql 集合转多行 SELECT substring_index(substring_index(t1.group_ids, ,, n), ,, -1) AS group_id FROM (select 908,909 as group_ids ) t1, (SELECT rownum : rownum 1 AS n FROM ( SELECT rownum : 0 ) r, orders ) t2 WHERE n < ( LENGTH( t1.group_ids ) - LENGT…...

MFC:只允许产生一个应用程序实例的具体实现

在MFC&#xff08;Microsoft Foundation Class&#xff09;应用程序中&#xff0c;如果你想限制只允许产生一个应用程序实例&#xff0c;通常会使用互斥体&#xff08;Mutex&#xff09;来实现。这可以确保如果用户尝试启动第二个实例时&#xff0c;它会被阻止或将焦点返回到已…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...