pytorch 笔记:torch.optim.Adam
-
torch.optim.Adam是一个实现 Adam 优化算法的类。 - Adam 是一个常用的梯度下降优化方法,特别适合处理大规模数据集和参数的深度学习模型
torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False, *, foreach=None, maximize=False, capturable=False, differentiable=False, fused=None)
| params | 待优化参数的可迭代对象,或定义参数组的字典 |
| lr | 学习率,默认为 1e-3 |
| betas | 用于计算梯度及其平方的移动平均的系数,默认为 (0.9, 0.999) |
| eps | 为了提高数值稳定性而添加到分母的项,默认为 1e-8 |
| weight_decay | 权重衰减(L2惩罚),默认为 0 |
| amsgrad | 是否使用 AMSGrad 变种,该变种来源于论文 "On the Convergence of Adam and Beyond",默认为 False |
| foreach | 是否使用优化器的 foreach 实现。默认情况下,如果未指定,则在 CUDA 上尝试使用 foreach 而不是循环实现,因为它通常性能更好。 |
| maximize | 是否最大化目标函数,默认为 False(即最小化目标函数) |
| differentiable | 训练中的优化器步骤是否可以进行自动微分。否则,step() 函数将在 torch.no_grad() 上下文中运行。如果不打算通过此实例运行自动微分,请将其设置为 False,默认为 False。 |
| fused | 是否使用融合实现(仅限 CUDA)。目前支持 torch.float64、torch.float32、torch.float16 和 torch.bfloat16,默认为 None。 |

相关文章:
pytorch 笔记:torch.optim.Adam
torch.optim.Adam 是一个实现 Adam 优化算法的类。Adam 是一个常用的梯度下降优化方法,特别适合处理大规模数据集和参数的深度学习模型 torch.optim.Adam(params, lr0.001, betas(0.9, 0.999), eps1e-08, weight_decay0, amsgradFalse, *, foreachNone, maximizeFa…...
开源AI智能名片小程序:深度剖析体验优化策略,激活小程序生命力的运营之道
摘要:在移动互联网的浪潮中,微信小程序凭借其无需下载、即用即走的特性,迅速成为企业连接用户、拓展市场的重要桥梁。开源AI智能名片小程序,作为这一领域的创新尝试,旨在通过融合人工智能技术与传统商务名片的概念&…...
ML.Net 学习之使用经过训练的模型进行预测
什么是ML.Net:(学习文档上摘的一段:ML.NET 文档 - 教程和 API 参考 | Microsoft Learn 【学习入口】) 它使你能够在联机或脱机场景中将机器学习添加到 .NET 应用程序中。 借助此功能,可以使用应用程序的可用数据进行自…...
为什么 centos 下使用 tree 命令看不见 .env 文件
CentOS 下使用 tree 命令看不到 .env 文件主要有两个可能的原因: 默认情况下,tree 命令不显示隐藏文件。在 Linux 系统中,以点(.)开头的文件或目录被视为隐藏文件。.env 文件就属于这种隐藏文件。 您可能没有安装 tree 命令。如果在 CentOS …...
数据库基础与性能概述及相关术语
在计算机科学领域,特别是数据库技术中,掌握与数据库性能相关的专业词汇对于数据库管理员、开发人员及数据分析师等专业人员来说至关重要。以下是一篇关于计算机必背单词——数据库性能相关的详细解析. 一、数据库基础与性能概述 数据库是计算机科学中的…...
docker基于外部缓存加速构建方案
开启外部缓存 http://your_apt_cacher_ng_server:3142 是一个示例 URL,表示需要设置的 apt-cacher-ng 代理服务器的地址。apt-cacher-ng 是一个本地代理服务器,可以缓存从官方 APT 仓库下载的软件包,从而加速后续的下载过程,并减…...
【C语言】 作业11 链表+实现函数封装
递归实现链表数据互换,纯不会,明天再说 1、链表实现以下功能 链表,创建链表,申请节点,判空,头插,遍历输出,通过位置查找节点,任意位置插入,头删,…...
【Ubuntu】Ubuntu20修改MAC地址
文章目录 一、临时修改MAC地址(重启后复原)二、永久修改MAC地址 场景:在做虚拟机复制时,复制完的两台虚拟机存在相同MAC,导致无法分别分配IP。 解决:修改一台虚拟机的MAC地址。 一、临时修改MAC地址&#…...
ClickHouse集成LDAP实现简单的用户认证
1.这里我的ldap安装的是docker版的 docker安装的化就yum就好了 sudo yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin sudo systemctl start docker 使用下面的命令验证sudo docker run hello-world docker pull osixia/openl…...
C语言-预处理详解
1.预处理符号 C语言中设置了一些预定义符号,可以直接使用,预定义符号是在预处理期间处理的。 __FILE__//代表当前进行编译的源文件 __LINE__//文件当前行号 __DATE__//文件当前日期 __TIME__//文件当前时间 __STDC__//如果编译器遵循ANSIC,…...
计算机网络-VLAN间通信(三层通信)模拟实现
目录 VLAN基础知识VLAN和普通LAN区别划分VLAN的原因 实现VLAN间的通信(三层通信)方案一:多臂路由方案二:单臂路由方案三:三层交换机 VLAN基础知识 VLAN(Virtual Local Area Network,虚拟局域网…...
【JAVA】数据类型及变量
🎉欢迎大家收看,请多多支持🌹 🥰关注小哇,和我一起成长🚀个人主页🚀 Java的数据类型 可以分为两类,基本数据类型和引用数据类型 基本数据类型有4类8种,4类分别是整型 浮…...
微软蓝屏事件暴露的网络安全问题
目录 1.概述 2.软件更新流程中的风险管理和质量控制机制 2.1.测试流程 2.2.风险管理策略 2.3.质量控制措施 2.4.小结 3.预防类似大规模故障的最佳方案或应急响应对策 3.1. 设计冗余系统 3.2. 实施灾难恢复计划 3.3. 建立高可用架构 3.4. 类似规模的紧急故障下的响应…...
11 - FFmpeg - 编码 AAC
Planar 模式是 ffmpeg内部存储模式,我们实际使用的音频文件都是Packed模式的。 FFmpeq解码不同格式的音频输出的音频采样格式不是一样。 其中AAC解码输出的数据为浮点型的 AV_SAMPLE_FMT_FLTP 格式,MP3 解码输出的数据为 AV_SAMPLE_FMT_S16P 格式(使用的…...
OS Copilot初体验的感受与心得
本文介绍体验操作系统智能助手OS Copilot后,个人的一些收获、体验等。 最近,抽空体验了阿里云的操作系统智能助手OS Copilot,在这里记录一下心得与收获。总体观之,从个人角度来说,感觉这个OS Copilot确实抓住了不少开发…...
Ajax学习笔记
文章目录标题 Ajax学习笔记axios使用axios请求拦截器axios响应拦截器优化axios响应结果 form-serialize插件图片上传HTTP协议请求报文相应报文接口文档 AJAX原理 - XMLHttpRequest使用XMLHttpRequestXMLHttpRequest - 查询参数查询字符串对象 XMLHttpRequest - 数据提交 事件循…...
医学深度学习与机器学习融合的随想
医学深度学习与机器学习融合的随想 近年来,深度学习(图像类)和机器学习在医学领域的应用取得了飞速发展,为医学影像分析、疾病诊断和预后预测等领域带来了革命性的变革。深度学习擅长从复杂数据中提取高层次特征,而机…...
坑人的macos tar 命令 (实际上是bsdtar)换用 gnu tar
周末 看着笔记本上好用的朗文当代高级词典(mac版)和其它两部词典,准备复制到黑苹果台式机上去。考虑到词典内容有太多小文件,普通复制传输太慢,毫无疑问用 tar 打包肯定快而且能保留原始文件的各种信息。命令如下: time tar czf …...
【SpringBoot3】全局异常处理
【SpringBoot3】全局异常处理 一、全局异常处理器step1:创建收入数字的页面step2:创建控制器,计算两个整数相除step3:创建自定义异常处理器step5:创建给用提示的页面step6:测试输入(10/0) 二、BeanValidato…...
vue-Treeselect
一、Node KeyTypeDescriptionid (required)Number | String用于标识树中的选项。其值在所有选项中必须是唯一的label (required)String用于显示选项childrennode[] | null声明一个分支节点。你可以: 1) 设置为由a组成的子选项数组。叶节点,b…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
