Python和MATLAB网络尺度结构和幂律度大型图生成式模型算法
🎯要点
🎯算法随机图模型数学概率 | 🎯图预期度序列数学定义 | 🎯生成具有任意指数的大型幂律网络,数学计算幂律指数和平均度 | 🎯随机图分析中巨型连接分量数学理论和推论 | 🎯生成式多层网络中尺度结构有序无序分析模型
📜生成式随机图模型用例
📜MATLAB和Python零模型社会生物生成式结构化图
📜语言内容分比

 
🍇Python合成图模型
有时,找到合适的图形数据集来评估算法可能是一项艰巨的任务。有多种选择,通常需要相当长的时间才能完成。即使您找到了完美的图形数据集,您也必须验证其使用、共享和隐私政策。我们需要一种叫做合成图的东西,这些图形数据集是人工生成的可以快速评估目的。
合成图是使用图生成模型生成的。它们的构造是为了尽可能接近地模仿现实世界的图表。
-  埃尔多斯-雷尼模型:在此模型中,我们从一组预定义的节点(例如 N)开始。现在我们使用概率在节点之间添加边以生成图。概率是固定的,并且对于图中的所有节点对都是相同的。因此,较高的概率使图变得密集,较低的概率使图变得稀疏。这是一个简单的模型,与现实世界的图相差甚远。 
-  瓦茨-斯特罗加茨模型:这是一种生成具有小世界属性的图的方法。在这种情况下,小世界被定义为具有小路径长度和高聚类系数的事物。 
 路径长度:它是图中两个节点之间距离的度量。路径长度越短,节点之间的距离越近。聚类系数:它衡量节点的邻居彼此连接的紧密程度。
 该模型以具有固定节点数的规则网格结构开始,并将节点的边连接到其最近的邻居。它使用重新布线概率,这意味着一些边会随机地从一个地方移除并添加到其他地方。它用于对现实世界网络进行建模,这些网络是社交网络和交通网络等小世界的实例。
- 巴拉巴西-阿尔伯特模型:该图生成模型遵循“富者愈富”原则。该模型将新节点连接到已有更多连接的现有节点。它导致图中出现一些高度连接的节点和几个连接较差的节点。它用于对互联网和社交网络等无标度网络进行建模。
让我们检查一下合成图如何使用所有三个模型并看看它们的外观。
import networkx as nx
import numpy as np
import matplotlib.pyplot as pltG1 = nx.erdos_renyi_graph(n=50, p=0.2, seed=42)
G2 = nx.watts_strogatz_graph(n=50, k=5, p=0.4, seed=42)
G3 = nx.barabasi_albert_graph(n=50, m=5, seed=42)fig, ax = plt.subplots(1, 3, figsize=(15, 5))ax[0].set_title('Erdos-Renyi')
ax[1].set_title('Watts-Strogatz')
ax[2].set_title('Barabasi-Albert')
nx.draw(G1, ax=ax[0])
nx.draw(G2, ax=ax[1])
nx.draw(G3, ax=ax[2])
plt.show()
调整超参数会生成截然不同的图表。
对于社交网络,我们希望添加节点特征和节点标签。这可以使用 faker python 库来完成,它会生成假名称。
from faker import Faker
import networkx as nx
import matplotlib.pyplot as pltfaker = Faker()names = []for i in range(10):name = faker.name()names.append(name)G = nx.barabasi_albert_graph(n=10, m=5, seed=42)mapping = {i: names[i] for i in range(len(names))}
G = nx.relabel_nodes(G, mapping)
fig, ax = plt.subplots(figsize=(3, 2), dpi=300)
nx.draw(G, with_labels=True, node_size=50,width=0.1, font_size=3.5)
plt.show()
合成社交网络现在有了标签。每个节点代表一个人,他们的名字充当节点标签。可以生成社交网络中每个人的其他节点属性(例如年龄、性别和职业)并更新图。 现在我们有了一个满载的合成社交网络,可用于执行图形分析任务。
👉参阅、更新:计算思维 | 亚图跨际
相关文章:
 
Python和MATLAB网络尺度结构和幂律度大型图生成式模型算法
🎯要点 🎯算法随机图模型数学概率 | 🎯图预期度序列数学定义 | 🎯生成具有任意指数的大型幂律网络,数学计算幂律指数和平均度 | 🎯随机图分析中巨型连接分量数学理论和推论 | 🎯生成式多层网络…...
 
在jsPsych中使用Vue
jspsych 介绍 jsPsych是一个非常好用的心理学实验插件,可以用来构建心理学实验。具体的就不多介绍了,大家可以去看官网:https://www.jspsych.org/latest/ 但是大家在使用时就会发现,这个插件只能使用js绘制界面,或者…...
 
机器学习·概率论基础
概率论 概率基础 这部分太简单,直接略过 条件概率 独立性 独立事件A和B的交集如下 非独立事件 非独立事件A和B的交集如下 贝叶斯定理 先验 事件 后验 在概率论和统计学中,先验概率和后验概率是贝叶斯统计的核心概念 简单来说后验概率就是结合了先验概…...
 
c生万物系列(面向对象:封装)
本系列博客主要介绍c语言的一些屠龙技,里面包含了笔者本人的一些奇思妙想。 该系列博客笔者只是用作记录。如果你偶然找到了这篇博客,但是发现不知所云,请不要过多投入时间,可能笔者本人那时候也看不懂了。 笔者决定用c语言模仿…...
 
当当网数据采集:Scrapy框架的异步处理能力
在互联网数据采集领域,Scrapy框架以其强大的异步处理能力而著称。Scrapy利用了Python的异步网络请求库,如twisted,来实现高效的并发数据采集。本文将深入探讨Scrapy框架的异步处理能力,并展示如何在当当网数据采集项目中应用这一能…...
React——useEffect和自定义useUpdateEffect
useEffect 是React的一个内置Hook,用于在组件渲染后执行副作用(例如数据获取、订阅或手动更改DOM)。它将在第一次渲染后和每次更新后都会执行。 useEffect(() > {// 这里的代码将在组件挂载和更新时执行。 }, [dependencies]); // depend…...
Hadoop大数据处理架构中ODB、DIM、DWD、DWS
在Hadoop的大数据处理架构中,ODS、DIM、DWD和DWS分别代表了数据仓库体系中不同的层次和功能。下面解释这几个概念: ODS (Operational Data Store) 想象你有一家超市,每天营业结束后,你会把当天所有的销售记录、顾客信息、商品库…...
 
【刷题汇总 -- 爱丽丝的人偶、集合、最长回文子序列】
C日常刷题积累 今日刷题汇总 - day0211、爱丽丝的人偶1.1、题目1.2、思路1.3、程序实现 2、集合2.1、题目2.2、思路2.3、程序实现 -- set 3、最长回文子序列3.1、题目3.2、思路3.3、程序实现 -- dp 4、题目链接 今日刷题汇总 - day021 1、爱丽丝的人偶 1.1、题目 1.2、思路 …...
 
基于vue3 + vite产生的 TypeError: Failed to fetch dynamically imported module
具体参考这篇衔接: Vue3报错:Failed to fetch dynamically imported module-CSDN博客 反正挺扯淡的,错误来源于基于ry-vue-plus来进行二次开发的时候遇到的问题。 错误起因 我创建了一个广告管理页面。然后发现访问一直在加载中。报的是这样…...
 
批量自动添加好友,高效拓展人脉圈.
随着微信使用数量的不断增加,手动添加好友成为了一项耗时且繁琐的任务。为了帮助大家解决这个问题,下面分享一款高效的微信管理系统,它能够帮助你实现批量自动添加好友,极大提升了人脉拓展的效率。 这款微信管理系统可以同时管理多…...
 
Web开发:一个可拖拽的模态框(HTML、CSS、JavaScript)
目录 一、需求描述 二、实现效果 三、完整代码 四、实现过程 1、HTML 页面结构 2、CSS 元素样式 3、JavaScript动态控制 (1)获取元素 (2)显示\隐藏遮罩层与模态框 (3)实现模态框拖动效果 一、需求…...
【深度学习】fooocusapi,docker,inpainting图像
基础镜像制作来源 fooocusapi接口官方写的: docker run -d --gpusall \-e NVIDIA_DRIVER_CAPABILITIEScompute,utility \-e NVIDIA_VISIBLE_DEVICESall \-p 8888:8888 konieshadow/fooocus-api会下载一些模型,下载完后推这个镜像 docker commit 4dfd1…...
 
算法017:二分查找
二分查找. - 备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/binary-search/ 二分查找,其实是双指针的一种特殊情况,但是时间复杂度极低&#…...
 
谷粒商城实战笔记-37-前端基础-Vue-基本语法插件安装
文章目录 一,v-model1,双向绑定2,vue的双向绑定2.1 html元素上使用指令v-model2.2 model中声明对应属性2.3,验证view绑定modelmodel绑定view 完整代码 二,v-on1,指令简介2,在button按钮中添加v-…...
 
mybatis中的缓存(一级缓存、二级缓存)
文章目录 前言一、MyBatis 缓存概述二、一级缓存1_初识一级缓存2_一级缓存命中原则1_StatementId相同2_查询参数相同3_分页参数相同4_sql 语句5_环境 3_一级缓存的生命周期1_缓存的产生2_缓存的销毁3_网传的一些谣言 4_一级缓存核心源码5_总结 三、二级缓存1_开启二级缓存2_二级…...
 
实现自动化采购:食堂采购系统源码开发详解
本篇文章,笔者将详细介绍食堂采购系统的开发过程,从需求分析、系统设计到实现和测试,为您全面解析如何构建一个高效的自动化采购系统。 一、需求分析 1.采购计划管理 2.供应商管理 3.订单管理 4.库存管理 5.财务管理 6.数据分析与报告 …...
 
linux、windows、macos清空本地DNS缓存
文章目录 Linux:Windows:macOS: Linux: 对于使用systemd的操作系统(如CentOS 7、Ubuntu 16.04),可以使用以下命令重启systemd-resolved服务来清除缓存: sudo systemctl restart sys…...
 
领夹麦克风哪个品牌好,电脑麦克风哪个品牌好,热门麦克风推荐
在信息快速传播的时代,直播和视频创作成为了表达与交流的重要方式。对于追求卓越声音品质的创作者而言,一款性能卓越的无线麦克风宛如一把利剑。接下来,我要为大家介绍几款备受好评的无线麦克风,这些都是我在实际使用中体验良好…...
 
【第5章】Spring Cloud之Nacos服务注册和服务发现
文章目录 前言一、提供者1. 引入依赖2.配置 Nacos Server 地址3. 开启服务注册 二、消费者1. 引入依赖2.配置 Nacos Server 地址3. 开启服务注册 三、服务列表四、服务发现1. 获取服务列表2. 测试2.1 获取所有服务2.2 根据服务名获取服务信息 五、更多配置项总结 前言 本节通过…...
 
Springboot 启动时Bean的创建与注入(一)-面试热点-springboot源码解读-xunznux
Springboot 启动时Bean的创建与注入,以及对应的源码解读 文章目录 Springboot 启动时Bean的创建与注入,以及对应的源码解读构建Web项目流程图:堆栈信息:堆栈信息简介堆栈信息源码详解1、main:10, DemoApplication (com.xun.demo)2…...
 
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
 
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
 
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
