当前位置: 首页 > news >正文

【线性代数】矩阵变换

一些特殊的矩阵

一,对角矩阵

1,什么是对角矩阵

表示将矩阵进行伸缩(反射)变换,仅沿坐标轴方向伸缩(反射)变换。

2,对角矩阵可分解为多个F1矩阵,如下:

二,剪切矩阵

1,什么是剪切矩阵

2,剪切矩阵的几何意义

3,剪切矩阵的特点

变换前后面积不变

三,正交矩阵

1,什么是正交矩阵?

2,正交矩阵的特点

(1)是方阵

(2)每个列向量都是单位矩阵

(3)每对列向量都正交

(4)正交矩阵的转置等于它的逆

3,正交矩阵的几何意义

只有旋转,无剪切,无伸缩,无反射

如下图所示,矩阵A表示绕X轴旋转60°,矩阵B表示绕Z轴旋转45°,C表示先按X轴旋转60°再按Z轴旋转45°,顺序不能颠倒。

若颠倒顺序,先绕Z轴旋转,再按X轴旋转,则:

四,投影矩阵

1,什么是投影矩阵?

将高维的变换到低维

谱分解

作用对象是对称矩阵,对称矩阵的特征向量正交。

本质:将一个复杂的变换分解为:旋转-伸缩-逆旋转

Q为单位特征向量组成的矩阵,即e1,e2,e3都是单位特征向量,\Lambda为特征值组成的对角矩阵。

过程解释(以2维为例):原对称矩阵S具有2个特征向量,且特征向量都正交,Q^{T}矩阵实现了将特征基 e1,e2旋转到原来的基 (1,0)(0,1)的过程,然后进行\Lambda伸缩变换,即沿特征基的方向进行伸缩变换,最后再乘Q将特征基旋转回原来的位置。

谱分解的特殊点:

(1)对称矩阵的特征向量都正交,原来的基也是正交的,则仅进行正交变换(旋转)即可实现将特征基旋转为原来的基。

奇异值分解

奇异值分解与谱分解的区别只有,谱分解是旋转---伸缩---逆旋转,而奇异值分解是旋转---伸缩(可能有维度消除或维度扩充)---再旋转。奇异值分解的第二次旋转不是第一次旋转的逆旋转。

1,图+公式推导

待分解矩阵的变换如图,改变换将相互正交的向量v_{1}v_{2} 变换到仍然相互正交的向量u_{1}u_{2},伸缩量为\sigma _{1}\sigma _{2}。设V=[v_{1},v_{2}]U=[u_{1},u_{2}]\Sigma =\begin{bmatrix} \sigma _{1} &0 \\ 0 &\sigma _{2} \end{bmatrix}

MV=U\Sigma,即 M=U\Sigma V^{T}

即         M^{T}M=V\Sigma U^{T}U\Sigma V^{T}=V\Sigma ^{2}V^{T}

即         M^{T}MV=V\Sigma ^{2}

所以M^{T}M的特征向量为V,特征值为\Sigma ^{2}=\begin{bmatrix} \sigma _{1}^{2} &0 \\ 0 & \sigma _{2}^{2} \end{bmatrix}

同理MM^{T}的特征向量为U,特征值为\Sigma ^{2}=\begin{bmatrix} \sigma _{1}^{2} &0 \\ 0 & \sigma _{2}^{2} \end{bmatrix}

综上,奇异值分解中M=U\Sigma V^{T}UMM^{T}的特征向量,VM^{T}M的特征向量。\SigmaMM^{T}M^{T}M特征值的平方根。

V为右奇异向量,U为左奇异向量。

2,几何解释

相关文章:

【线性代数】矩阵变换

一些特殊的矩阵 一,对角矩阵 1,什么是对角矩阵 表示将矩阵进行伸缩(反射)变换,仅沿坐标轴方向伸缩(反射)变换。 2,对角矩阵可分解为多个F1矩阵,如下: 二&a…...

聚焦智慧出行,TDengine 与路特斯科技再度携手

在全球汽车行业向电动化和智能化转型的过程中,智能驾驶技术正迅速成为行业的焦点。随着消费者对出行效率、安全性和便利性的需求不断提升,汽车制造商们需要在全球范围内实现低延迟、高质量的数据传输和处理,以提升用户体验。在此背景下&#…...

虚拟机迁移报错:虚拟机版本与主机“x.x.x.x”的版本不兼容

1.虚拟机在VCenter上从一个ESXi迁移到另一个ESXi上时报错:虚拟机版本与主机“x.x.x.x”的版本不兼容。 2.例如从10.0.128.13的ESXi上迁移到10.0.128.11的ESXi上。点击10.0.128.10上的任意一台虚拟机,查看虚拟机版本。 3.确认要迁移的虚拟机磁盘所在位…...

【教程】vscode添加powershell7终端

win10自带的 powershell 是1.0版本的,太老了,更换为powershell7后,在 vscode 的集成终端中没有显示本篇教程记录在vscode添加powershell7终端的过程 打开vscode终端配置 然后来到这个页面进行设置 查看 powershell7 的安装位置&#xff…...

如何乘上第四次工业革命的大船

如何乘上第四次工业革命的大船 第四次工业革命通常被认为是信息技术和数字化时代的到来,但具体影响哪些产业,以及它将如何演变和展开,仍然是一个广泛讨论的话题。 然而,已经可以看到一些领域可能受到第四次工业革命的深远影响,例如人工智能、物联网、大数据、生物技术、可…...

RKNN执行bash ./build-linux_RK3566_RK3568.sh 报错

目录 报错信息: 原因分析: 解决办法: 报错信息: CMake Error at /usr/share/cmake-3.22/Modules/CMakeDetermineCCompiler.cmake:49 (message): Could not find compiler set in environment variable CC: aarch64-linux-gnu-gcc. Call Stack (most recent call fir…...

Linux常用命令整理

本文将分享一些常用的Linux命令。根据功能的不同,大概分为以下几个方面,一是文件相关命令,二是进程相关命令,三是网络相关命令,四是磁盘相关命令,五是用户管理相关命令,六是系统命令。 1. 文件…...

python 闭包、装饰器

一、闭包: 1. 外部函数嵌套内部函数 2. 外部函数返回内部函数 3.内部函数可以访问外部函数局部变量 闭包(Closure)是指在一个函数内部定义的函数,并且内部函数可以访问外部函数的局部变量,即使外部函数已经执行…...

[pycharm]解决pycharm运行程序出现卡住scanning files to index索引的问题

有时候会出现索引问题,显示scanning files to index 解决方法: in pycharm, go to the "File" on the left top, then select "invalidate caches/restart...", and press "invalidate and restart". 然后等它自己重启…...

python每日学习11:numpy库的用法(下)

python每日学习11:numpy库的用法(下) 数组的拼接 名方法称说明concatenate连接沿现有轴的数组序列hstack水平堆叠序列中的数组(列方向)vstack竖直堆叠序列中的数组(行方向)concatenate函数用于沿指定轴连接相同形状的两…...

【Emacs有什么优点,用Emacs写程序真的比IDE更方便吗?】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...

6、基于Fabirc 2.X 通用电子存证系统部署

evidence 将GOPATH设置为/root/go,拉取项目: cd $GOPATH/src && git clone https://gitee.com/henan-minghua_0/evidence.git 在/etc/hosts中添加: 127.0.0.1 orderer.example.com 127.0.0.1 peer0.org1.example.com 127.0.0.1 peer1.org…...

Linux Vim 由浅入深的教程

引言 原文链接 Vim是Linux系统中非常强大的文本编辑器,因其强大的功能和灵活的操作而受到广泛使用。尤其是在服务器管理和开发环境中,Vim几乎是必备工具。本教程将以CentOS 7为例,详细讲解Vim的安装、基本操作以及一些高级技巧,…...

MIT6.824(6.5840) Lab1笔记+源码

文章目录 其他人的内容,笔记写的更好,思路可以去看他们的MapReduceworkermapreduce coordinatorrpc纠错 源码worker.gocoordinator.gorpc.go 原本有可借鉴的部分 mrsequential.go,多看几遍源码 其他人的内容,笔记写的更好&#xf…...

【目录】8051汇编与C语言系列教程

8051汇编与C语言系列教程 作者将狼才鲸创建日期2024-07-23 CSDN文章地址:【目录】8051汇编与C语言系列教程本Gitee仓库原始地址:才鲸嵌入式/8051_c51_单片机从汇编到C_从Boot到应用实践教程 一、本教程目录 序号教程名称简述教程链接1点亮LCD灯通过IO…...

群管机器人官网源码

一款非常好看的群管机器人html官网源码 搭建教程: 域名解析绑定 源码文件上传解压 访问域名即可 演示图片: 群管机器人官网源码下载:客户端下载 - 红客网络编程与渗透技术 原文链接: 群管机器人官网源码...

整合EasyExcel实现灵活的导入导出java

引入pom依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId></dependency>实现功能 结合Vue前端&#xff0c;实现浏览器页面直接导出日志文件实现文件的灵活导入文件导出 3. 实体类 实体类里有自定义转…...

springSecurity学习之springSecurity web如何取得用户信息

web如何取得用户信息 之前说过SecurityContextHolder默认使用的是ThreadLocal来进行存储的&#xff0c;而且每次都会清除&#xff0c;但是web每次请求都会验证用户权限&#xff0c;这是如何做到的呢&#xff1f; 这是通过SecurityContextPersistenceFilter来实现的&#xff0…...

eclipse中的classbean导入外部class文件,clean项目后删除问题

最近被eclipse搞得头疼&#xff0c;下午终于解决 eclipse创建的java项目中&#xff0c;类的输出目录是classbean。由于项目需要&#xff0c;classbean目录下已经导入了外部的类&#xff0c;但每次clean项目时&#xff0c;会把class删掉。 广泛查询&#xff0c;eclipse不清空c…...

OBD诊断(ISO15031) 0A服务

文章目录 功能简介ISO 15765-4的诊断服务定义1、请求具有永久状态的排放相关故障诊断码2、请求具有永久状态的排放相关故障诊断码3、示例报文 功能简介 0A服务&#xff0c;即 Request emission-related diagnostic trouble code with permanent status&#xff08;请求排放相关…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...