当前位置: 首页 > news >正文

【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search

文章目录

  • 前言
  • Motivation
  • Contributions
  • Method
    • Facet-constrained Question Generation
    • Multiform Question Prompting and Ranking
  • Experiments
  • Dataset
  • Result
    • Auto-metric evaluation
    • Human evaluation
  • Knowledge

前言

  • 最近对一些之前的文章进行了重读,因此整理了之前的笔记
  • 理解不当之处,请多多指导
  • 概括:本文利用facet word,基于 GPT-2 进行了 zero-shot 的限制生成,使生成的问题更容易包含facet word。同时利用了prompt,使用8种模板,对每个模板都生成一个结果,然后使用一些排序算法自动挑选出一个最终结果。
  • 更多论文可见:ShiyuNee/Awesome-Conversation-Clarifying-Questions-for-Information-Retrieval: Papers about Conversation and Clarifying Questions (github.com)

Motivation

Generate clarifying questions in a zero-shot setting to overcome the cold start problem and data bias.

cold start problem: 缺少数据导致难应用,难应用导致缺少数据

data bias: 获得包括所有可能topic的监督数据不现实,在这些数据上训练也会有 bias

Contributions

  • the first to propose a zero-shot clarifying question generation system, which attempts to address the cold-start challenge of asking clarifying questions in conversational search.
  • the first to cast clarifying question generation as a constrained language generation task and show the advantage of this configuration.
  • We propose an auxiliary evaluation strategy for clarifying question generations, which removes the information-scarce question templates from both generations and references.

Method

Backbone: a checkpoint of GPT-2

  • original inference objective is to predict the next token given all previous texts

在这里插入图片描述

Directly append the query qqq and facet fff as input and let GPT-2 generate cq will cause two challenges:

  • it does not necessarily cover facets in the generation.
  • the generated sentences are not necessarily in the tone of clarifying questions

We divide our system into two parts:

  • facet-constrained question generation(tackle the first challenge)
  • multi-form question prompting and ranking(tackle the second challenge, rank different clarifying questions generated by different templates)

Facet-constrained Question Generation

Our model utilizes the facet words not as input but as constraints. We employ an algorithm called Neurologic Decoding. Neurologic Decoding is based on beam search.

  • in ttt​ step, assuming the already generated candidates in the beam are 𝐶={𝑐1:𝑘}𝐶 = \{𝑐_{1:𝑘} \}C={c1:k}, kkk is the beam size, ci=x1:(t−1)ic_i=x^i_{1:(t-1)}ci=x1:(t1)i is the iii th candidate, x1:(t−1)ix^i_{1:(t-1)}x1:(t1)i are tokens generated from decoding step 1 to (t−1)(t-1)(t1)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98Ld4wAG-1678024307327)在这里插入图片描述

    • explain about why this method could better constrain the decoder to generate facet-related questions:
      • (2)top−β(2)top- \beta(2)topβ​ is the main reason for promoting facet words in generations. Because of this filtering, Neurologic Decoding tends to discard generations with fewer facet words regardless of their generation probability
      • (3)(3)(3)​ the group is the key for Neurologic Decoding to explore as many branches as possible. Because this grouping method keeps the most cases $(2^{| 𝑓 |} ) $of facet word inclusions, allowing the decoder to cover the most possibilities of ordering constraints in generation
        • because if we choose top K candidates directly, there may be some candidates containing same facets, this results in less situation containing diverse facets. Towards choosing the best candidate in each group and then choose top K candidates, every candidate will contain different facets.

Multiform Question Prompting and Ranking

Use clarifying question templates as the starting text of the generation and let the decoder generate the rest of question body.

  • if the qqq is “I am looking for information about South Africa.” Then we give the decoder “I am looking for information about South Africa. [SEP] would you like to know” as input and let it generate the rest.
  • we use multiple prompts(templates) to both cover more ways of clarification and avoid making users bored

For each query, we will append these eight prompts to the query and form eight input and generate eight questions.

  • use ranking methods to choose the best one as the returned question

Experiments

Zero-shot clarifying question generation with existing baselines

  • Q-GPT-0
    • input: query
  • QF-GPT-0:
    • input: facet + query
  • Prompt-based GPT-0: includes a special instructional prompt as input
    • input: q “Ask a question that contains words in the list [f]”
  • Template-0: a template-guided approach using GPT-2
    • input: add the eight question templates during decoding and generate the rest of the question

Existing facet-driven baselines(finetuned):

  • Template-facet: append the facet word right after the question template

在这里插入图片描述

  • QF-GPT: a GPT-2 finetuning version of QF-GPT-0.
    • finetunes on a set of tuples in the form as f [SEP] q [BOS] cq [EOS]
  • Prompt-based finetuned GPT: a finetuning version of Prompt-based GPT-0
    • finetune GPT-2 with the structure: 𝑞 “Ask a question that contains words in the list [𝑓 ].” 𝑐𝑞

Note: simple facets-input finetuning is highly inefficient in informing the decoder to generate facet-related questions by observing a facet coverage rate of only 20%

Dataset

ClariQ-FKw: has rows of (q,f,cq) tuples.

  • q is an open-domain search query, f is a search facet, cq is a human-generated clarifying question
  • The facet inClariQ is in the form of a faceted search query. ClariQ-FKw extracts the keyword of the faceted query as its facet column and samples a dataset with 1756 training examples and 425 evaluation examples

Our proposed system does not access the training set while the other supervised learning systems can access the training set for finetuning.

Result

Auto-metric evaluation

在这里插入图片描述

RQ1: How well can we do in zero-shot clarifying question generation with existing baselines

  • all these baselines(the first four rows) struggle to produce any reasonable generations except for Template-0(but it’s question body is not good)
  • we find existing zero-shot GPT-2-based approaches cannot solve the clarifying question generation task effectively.

RQ2: the effectiveness of facet information for facet-specific clarifying question generation

  • compare our proposed zero-shot facet constrained (ZSFC) methods with a facet-free variation of ZSFC named Subject-constrained which uses subject of the query as constraints.
  • our study show that adequate use of facet information can significantly improve clarifying question generation quality

RQ3: whether our proposed zeroshot approach can perform the same or even better than existing facet-driven baselines

  • We see that from both tables, our zero-shot facet-driven approaches are always better than the finetuning baselines

Note: Template-facet rewriting is a simple yet strong baseline that both finetuning-based methods are actually worse than it.

Human evaluation

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eC8PWul-1678024307328)在这里插入图片描述

Knowledge

Approaches to clarifying query ambiguity can be roughly divided into three categories:

  • Query Reformulation: iteratively refine the query
    • is more efficient in context-rich situations
  • Query Suggestion: offer related queries to the user
    • is good for leading search topics, discovering user needs
  • Asking Clarifying Questions: proactively engages users to provide additional context.
    • could be exclusively helpful to clarify ambiguous queries without context.

相关文章:

【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search

文章目录前言MotivationContributionsMethodFacet-constrained Question GenerationMultiform Question Prompting and RankingExperimentsDatasetResultAuto-metric evaluationHuman evaluationKnowledge前言 最近对一些之前的文章进行了重读,因此整理了之前的笔记…...

ouc 网络安全实验 格式化字符串漏洞

文章目录要求lab1lab2lab3lab4结语因为当时自己做实验的时候出现了很多疑问不会解决,在网上看到了一位大佬 王森ouc 的专栏文章解决了很多问题,也学到了很多知识和解决问题的方法,现在把我的实验解决方法也发上来,希望有不会的同…...

PMSM矢量控制笔记(1.1)——电机的机械结构与运行原理

前言:重新整理以前的知识和文章发现,仍然有许多地方没有学得明白,懵懵懂懂含含糊糊的地方多如牛毛,尤其是到了真正实际写东西或者做项目时,如果不是系统的学习了知识,很容易遇到问题就卡壳,也想…...

2022年全国职业院校技能大赛(中职组)网络安全竞赛试题——中间人攻击渗透测试解析(详细)

B-4任务四:中间人攻击渗透测试 *任务说明:仅能获取Server4的IP地址 *任务说明:仅能获取Server11的IP地址 1.通过上题渗透后得到控制权限的服务器场景Server4进行查看本地的arp缓存表的操作,并将该操作所使用的命令作为Flag值提交; 2.通过上题渗透后得到控制权限的服务…...

MySQL必知必会 | 安全、维护、性能

全球化和本地化 关于MySQL处理不同字符集和语言 字符集和校对顺序 数据库被用来存储和检索数据,不同的语言和字符集需要以不同的方式存储和检索,因此,MySQL需要适应不同的字符集,适应不同的排序方式 一些术语: 字符…...

MaaS Model as a Service 模型即服务

大模型是人工智能的发展趋势和未来。大模型是“大算力强算法” 结合的产物。目前,大模型生态已初具规模。大模型能够实现 AI 从“手工作坊”到“工厂模式”的转变,大模型通常是在大规模无标注 数据上进行训练,学习出一种特征和规则&#xf…...

【编程基础】027.C语言中函数在解题中的应用(三)

文章目录C语言中函数的应用1、自定义函数实现二维数组的转置2、自定义函数之整数处理3、自定义函数之数字后移4、自定义函数之字符串拷贝C语言中函数的应用 1、自定义函数实现二维数组的转置 题目描述 写一个函数,使给定的一个二维数组(3&a…...

echart图表之highcharts

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、HighCharts是什么?二、使用步骤1.引入库2.前端代码3.展现结果4.后台自动截图总结前言 提示:这里可以添加本文要记录的大概内容&…...

关于.Net和Java的看法——我见过最牛的一个小实习生经历

1、背景 笔者(小方同学在学习)是一个专科院校的一名普通学生,目前就职于某三线城市的WEB方面.Net开发实习生,在找实习期间和就业期间的一些看法,发表此文,纯个人想法,欢迎讨论,指正…...

基于springboot+vue的“智慧食堂”程序设计实现【毕业论文,源码】

系统登录界面系统架构开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7数据库工具:Navicat开发软件:eclipse/myeclipse/ideaMaven包:Maven浏览器&#xf…...

学计算机选择什么编程语言好一些?

工资水平的话,目前人工智能、大数据和云计算等领域的工资相对较高,但是要求也高,学历,学习能力什么的。然后是后端开发,Python、Java、C等编程语言的工资普遍较高。 不用开发语言的优势 ​Java:Java是一种…...

持续集成 在 Linux 上搭建 Jenkins,自动构建接口测试

本篇把从 0 开始搭建 Jenkins 的过程分享给大家,希望对小伙伴们有所帮助。 文章目录 在 Linux 上安装 Jenkins在 Linux 上安装 Git在 Linux 上安装 Python在 Linux 上安装 Allure配置 Jenkinsjenkins 赋能 - 使用邮箱发送测试报告jenkins 赋能 - 优化测试报告内容…...

MySQL学习笔记(总结)

1. 数据库服务器操作命令 启动数据库:net start mysql80 (注释:windows命令) 停止数据库:net stop mysql80 (注释:windows命令) 重启数据库:systemctl restart mysql;…...

Android开发 Layout布局 ScrollView

1.LinearLayout 属性 orientation:内部组件排列方式,可选vertical、horizontal,默认horizontal layout_weight: 与平级组件长宽比例,需要将layout_width、layout_height其中一个设置为0dp,表明长或宽与平级组件的长…...

手撕数据结构与算法——树(三指针描述一棵树)

🏆作者主页:king&南星 🎄专栏链接:数据结构 🏅文章目录🌱树一、🌲概念与定义二、🌳定义与预备三、🌴创建结点函数四、🍀查找五、🍁插入六、&a…...

字节跳动Java后端开发实习面经

最近在和同学一起找实习,投了b站、字节和miHoYo的后端开发。b站二月底就投了,但现在也还没回复;miHoYo也还没回复,估计是只面向24届了;感谢字节,给了我面试的机会。字节真的处理好快,不到一周官…...

STM32实战项目-触摸按键

前言: 通过触摸按键控制LED灯以及继电器,具体实现功能如下: 1、触摸按键1单击与长按,控制LED1; 2、触摸按键2单击与长按,控制LED2; 3、触摸按键3单击与长按,控制LED3; 4、触摸按键4单击与长…...

安全行业-术语(万字)

肉鸡 所谓“肉鸡”说一种很形象的比喻,比喻那些可以任意被我们控制的电脑,对方可以是Windows系统,也可以说UNIX/linux系统,可以说普通的个人电脑,也可以是大型的服务器,我们可以像操作自己的电脑那样来操控…...

P1113 杂务(拓扑排序 or 记忆回溯)

题目描述 John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它。比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作。尽早将所有杂务完成是必要的,因为这样才有更…...

Web3中文|政策影响下的新加坡Web3步伐喜忧参半

如果说“亚洲四小龙”是新加坡曾经的荣耀,那么当时代进入21世纪的第二个十年,用新加坡经济协会(SEE)副主席、新加坡新跃社科大学教授李国权的话来说,新加坡现在的“荣耀”是全球金融的主要“节点”或区块链行业发展的关…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...