【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search
文章目录
- 前言
- Motivation
- Contributions
- Method
- Facet-constrained Question Generation
- Multiform Question Prompting and Ranking
- Experiments
- Dataset
- Result
- Auto-metric evaluation
- Human evaluation
- Knowledge
前言
- 最近对一些之前的文章进行了重读,因此整理了之前的笔记
- 理解不当之处,请多多指导
- 概括:本文利用facet word,基于
GPT-2
进行了 zero-shot 的限制生成,使生成的问题更容易包含facet word。同时利用了prompt,使用8种模板,对每个模板都生成一个结果,然后使用一些排序算法自动挑选出一个最终结果。 - 更多论文可见:ShiyuNee/Awesome-Conversation-Clarifying-Questions-for-Information-Retrieval: Papers about Conversation and Clarifying Questions (github.com)
Motivation
Generate clarifying questions in a zero-shot setting to overcome the cold start
problem and data bias
.
cold start problem: 缺少数据导致难应用,难应用导致缺少数据
data bias: 获得包括所有可能topic的监督数据不现实,在这些数据上训练也会有 bias
Contributions
- the first to propose a zero-shot clarifying question generation system, which attempts to address the cold-start challenge of asking clarifying questions in conversational search.
- the first to cast clarifying question generation as a constrained language generation task and show the advantage of this configuration.
- We propose an auxiliary evaluation strategy for clarifying question generations, which removes the information-scarce question templates from both generations and references.
Method
Backbone: a checkpoint of GPT-2
- original inference objective is to predict the next token given all previous texts
Directly append the query qqq and facet fff as input and let GPT-2 generate cq will cause two challenges:
- it does not necessarily cover facets in the generation.
- the generated sentences are not necessarily in the tone of clarifying questions
We divide our system into two parts:
- facet-constrained question generation(tackle the first challenge)
- multi-form question prompting and ranking(tackle the second challenge, rank different clarifying questions generated by different templates)
Facet-constrained Question Generation
Our model utilizes the facet words not as input but as constraints. We employ an algorithm called Neurologic Decoding. Neurologic Decoding is based on beam search.
-
in ttt step, assuming the already generated candidates in the beam are 𝐶={𝑐1:𝑘}𝐶 = \{𝑐_{1:𝑘} \}C={c1:k}, kkk is the beam size, ci=x1:(t−1)ic_i=x^i_{1:(t-1)}ci=x1:(t−1)i is the iii th candidate, x1:(t−1)ix^i_{1:(t-1)}x1:(t−1)i are tokens generated from decoding step 1 to (t−1)(t-1)(t−1)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98Ld4wAG-1678024307327)
- explain about why this method could better constrain the decoder to generate facet-related questions:
- (2)top−β(2)top- \beta(2)top−β is the main reason for promoting facet words in generations. Because of this filtering, Neurologic Decoding tends to discard generations with fewer facet words regardless of their generation probability
- (3)(3)(3) the group is the key for Neurologic Decoding to explore as many branches as possible. Because this grouping method keeps the most cases $(2^{| 𝑓 |} ) $of facet word inclusions, allowing the decoder to cover the most possibilities of ordering constraints in generation
- because if we choose top K candidates directly, there may be some candidates containing same facets, this results in less situation containing diverse facets. Towards choosing the best candidate in each group and then choose top K candidates, every candidate will contain different facets.
- explain about why this method could better constrain the decoder to generate facet-related questions:
Multiform Question Prompting and Ranking
Use clarifying question templates as the starting text of the generation and let the decoder generate the rest of question body.
- if the qqq is “I am looking for information about South Africa.” Then we give the decoder “I am looking for information about South Africa. [SEP] would you like to know” as input and let it generate the rest.
- we use multiple prompts(templates) to both cover more ways of clarification and avoid making users bored
For each query, we will append these eight prompts to the query and form eight input and generate eight questions.
- use ranking methods to choose the best one as the returned question
Experiments
Zero-shot clarifying question generation with existing baselines
- Q-GPT-0:
- input: query
- QF-GPT-0:
- input: facet + query
- Prompt-based GPT-0: includes a special instructional prompt as input
- input: q “Ask a question that contains words in the list [f]”
- Template-0: a template-guided approach using GPT-2
- input: add the eight question templates during decoding and generate the rest of the question
Existing facet-driven baselines(finetuned):
- Template-facet: append the facet word right after the question template
- QF-GPT: a GPT-2 finetuning version of QF-GPT-0.
- finetunes on a set of tuples in the form as f [SEP] q [BOS] cq [EOS]
- Prompt-based finetuned GPT: a finetuning version of Prompt-based GPT-0
- finetune GPT-2 with the structure: 𝑞 “Ask a question that contains words in the list [𝑓 ].” 𝑐𝑞
Note: simple facets-input finetuning is highly inefficient in informing the decoder to generate facet-related questions by observing a facet coverage rate of only 20%
Dataset
ClariQ-FKw
: has rows of (q,f,cq)
tuples.
q
is an open-domain search query,f
is a search facet,cq
is a human-generated clarifying question- The facet in
ClariQ
is in the form of a faceted search query.ClariQ-FKw
extracts the keyword of the faceted query as its facet column and samples a dataset with 1756 training examples and 425 evaluation examples
Our proposed system does not access the training set while the other supervised learning systems can access the training set for finetuning.
Result
Auto-metric evaluation
RQ1: How well can we do in zero-shot clarifying question generation with existing baselines
- all these baselines(the first four rows) struggle to produce any reasonable generations except for Template-0(but it’s question body is not good)
- we find existing zero-shot GPT-2-based approaches cannot solve the clarifying question generation task effectively.
RQ2: the effectiveness of facet information for facet-specific clarifying question generation
- compare our proposed zero-shot facet constrained (ZSFC) methods with a facet-free variation of ZSFC named Subject-constrained which uses subject of the query as constraints.
- our study show that adequate use of facet information can significantly improve clarifying question generation quality
RQ3: whether our proposed zeroshot approach can perform the same or even better than existing facet-driven baselines
- We see that from both tables, our zero-shot facet-driven approaches are always better than the finetuning baselines
Note: Template-facet rewriting is a simple yet strong baseline that both finetuning-based methods are actually worse than it.
Human evaluation
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eC8PWul-1678024307328)
Knowledge
Approaches to clarifying query ambiguity can be roughly divided into three categories:
- Query Reformulation: iteratively refine the query
- is more efficient in context-rich situations
- Query Suggestion: offer related queries to the user
- is good for leading search topics, discovering user needs
- Asking Clarifying Questions: proactively engages users to provide additional context.
- could be exclusively helpful to clarify ambiguous queries without context.
相关文章:

【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search
文章目录前言MotivationContributionsMethodFacet-constrained Question GenerationMultiform Question Prompting and RankingExperimentsDatasetResultAuto-metric evaluationHuman evaluationKnowledge前言 最近对一些之前的文章进行了重读,因此整理了之前的笔记…...

ouc 网络安全实验 格式化字符串漏洞
文章目录要求lab1lab2lab3lab4结语因为当时自己做实验的时候出现了很多疑问不会解决,在网上看到了一位大佬 王森ouc 的专栏文章解决了很多问题,也学到了很多知识和解决问题的方法,现在把我的实验解决方法也发上来,希望有不会的同…...

PMSM矢量控制笔记(1.1)——电机的机械结构与运行原理
前言:重新整理以前的知识和文章发现,仍然有许多地方没有学得明白,懵懵懂懂含含糊糊的地方多如牛毛,尤其是到了真正实际写东西或者做项目时,如果不是系统的学习了知识,很容易遇到问题就卡壳,也想…...
2022年全国职业院校技能大赛(中职组)网络安全竞赛试题——中间人攻击渗透测试解析(详细)
B-4任务四:中间人攻击渗透测试 *任务说明:仅能获取Server4的IP地址 *任务说明:仅能获取Server11的IP地址 1.通过上题渗透后得到控制权限的服务器场景Server4进行查看本地的arp缓存表的操作,并将该操作所使用的命令作为Flag值提交; 2.通过上题渗透后得到控制权限的服务…...
MySQL必知必会 | 安全、维护、性能
全球化和本地化 关于MySQL处理不同字符集和语言 字符集和校对顺序 数据库被用来存储和检索数据,不同的语言和字符集需要以不同的方式存储和检索,因此,MySQL需要适应不同的字符集,适应不同的排序方式 一些术语: 字符…...
MaaS Model as a Service 模型即服务
大模型是人工智能的发展趋势和未来。大模型是“大算力强算法” 结合的产物。目前,大模型生态已初具规模。大模型能够实现 AI 从“手工作坊”到“工厂模式”的转变,大模型通常是在大规模无标注 数据上进行训练,学习出一种特征和规则…...
【编程基础】027.C语言中函数在解题中的应用(三)
文章目录C语言中函数的应用1、自定义函数实现二维数组的转置2、自定义函数之整数处理3、自定义函数之数字后移4、自定义函数之字符串拷贝C语言中函数的应用 1、自定义函数实现二维数组的转置 题目描述 写一个函数,使给定的一个二维数组(3&a…...

echart图表之highcharts
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、HighCharts是什么?二、使用步骤1.引入库2.前端代码3.展现结果4.后台自动截图总结前言 提示:这里可以添加本文要记录的大概内容&…...

关于.Net和Java的看法——我见过最牛的一个小实习生经历
1、背景 笔者(小方同学在学习)是一个专科院校的一名普通学生,目前就职于某三线城市的WEB方面.Net开发实习生,在找实习期间和就业期间的一些看法,发表此文,纯个人想法,欢迎讨论,指正…...

基于springboot+vue的“智慧食堂”程序设计实现【毕业论文,源码】
系统登录界面系统架构开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7数据库工具:Navicat开发软件:eclipse/myeclipse/ideaMaven包:Maven浏览器…...
学计算机选择什么编程语言好一些?
工资水平的话,目前人工智能、大数据和云计算等领域的工资相对较高,但是要求也高,学历,学习能力什么的。然后是后端开发,Python、Java、C等编程语言的工资普遍较高。 不用开发语言的优势 Java:Java是一种…...

持续集成 在 Linux 上搭建 Jenkins,自动构建接口测试
本篇把从 0 开始搭建 Jenkins 的过程分享给大家,希望对小伙伴们有所帮助。 文章目录 在 Linux 上安装 Jenkins在 Linux 上安装 Git在 Linux 上安装 Python在 Linux 上安装 Allure配置 Jenkinsjenkins 赋能 - 使用邮箱发送测试报告jenkins 赋能 - 优化测试报告内容…...
MySQL学习笔记(总结)
1. 数据库服务器操作命令 启动数据库:net start mysql80 (注释:windows命令) 停止数据库:net stop mysql80 (注释:windows命令) 重启数据库:systemctl restart mysql;…...

Android开发 Layout布局 ScrollView
1.LinearLayout 属性 orientation:内部组件排列方式,可选vertical、horizontal,默认horizontal layout_weight: 与平级组件长宽比例,需要将layout_width、layout_height其中一个设置为0dp,表明长或宽与平级组件的长…...

手撕数据结构与算法——树(三指针描述一棵树)
🏆作者主页:king&南星 🎄专栏链接:数据结构 🏅文章目录🌱树一、🌲概念与定义二、🌳定义与预备三、🌴创建结点函数四、🍀查找五、🍁插入六、&a…...
字节跳动Java后端开发实习面经
最近在和同学一起找实习,投了b站、字节和miHoYo的后端开发。b站二月底就投了,但现在也还没回复;miHoYo也还没回复,估计是只面向24届了;感谢字节,给了我面试的机会。字节真的处理好快,不到一周官…...

STM32实战项目-触摸按键
前言: 通过触摸按键控制LED灯以及继电器,具体实现功能如下: 1、触摸按键1单击与长按,控制LED1; 2、触摸按键2单击与长按,控制LED2; 3、触摸按键3单击与长按,控制LED3; 4、触摸按键4单击与长…...
安全行业-术语(万字)
肉鸡 所谓“肉鸡”说一种很形象的比喻,比喻那些可以任意被我们控制的电脑,对方可以是Windows系统,也可以说UNIX/linux系统,可以说普通的个人电脑,也可以是大型的服务器,我们可以像操作自己的电脑那样来操控…...
P1113 杂务(拓扑排序 or 记忆回溯)
题目描述 John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它。比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作。尽早将所有杂务完成是必要的,因为这样才有更…...

Web3中文|政策影响下的新加坡Web3步伐喜忧参半
如果说“亚洲四小龙”是新加坡曾经的荣耀,那么当时代进入21世纪的第二个十年,用新加坡经济协会(SEE)副主席、新加坡新跃社科大学教授李国权的话来说,新加坡现在的“荣耀”是全球金融的主要“节点”或区块链行业发展的关…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...