Linux--Socket编程预备
目录
1. 理解源 IP 地址和目的 IP 地址
2.端口号
2.1端口号(port)是传输层协议的内容
2.2端口号范围划分
2.3理解 "端口号" 和 "进程 ID"
2.4理解 socket
3.传输层的典型代表
3.1认识 TCP 协议
3.2认识 UDP 协议
4. 网络字节序
5. socket 编程接口
1. 理解源 IP 地址和目的 IP 地址
IP 在网络中, 用来标识主机的唯一性
• 注意: 后面我们会讲 IP 的分类, 后面会详细阐述 IP 的特点
但是这里要思考一个问题: 数据传输到主机是目的吗? 不是的。 因为数据是给人用
的。 比如: 聊天是人在聊天, 下载是人在下载, 浏览网页是人在浏览?
但是人是怎么看到聊天信息的呢? 怎么执行下载任务呢? 怎么浏览网页信息呢? 通过
启动的 qq, 迅雷, 浏览器。
而启动的 qq, 迅雷, 浏览器都是进程。 换句话说, 进程是人在系统中的代表, 只要把
数据给进程, 人就相当于就拿到了数据。
所以: 数据传输到主机不是目的, 而是手段。 到达主机内部, 在交给主机内的进程,
才是目的。
但是系统中, 同时会存在非常多的进程, 当数据到达目标主机之后, 怎么转发给目标
进程? 这就要在网络的背景下, 在系统中, 标识主机的唯一性。
2.端口号
2.1端口号(port)是传输层协议的内容
- 端口号是一个 2 字节 16 位的整数;
- 端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理;
- IP 地址 + 端口号能够标识网络上的某一台主机的某一个进程;(互联网中独一无二的一个进程),网络通信的本质就是进程间通信,只是需要跨网络。(进程间通信要满足的条件:1.两个进程具有独立性(绝对的满足) 2.两个进程间要看到一个公共资源:网络),因此我们基于 IP+PORT 的通信 称之为Socket通信
- 一个端口号只能被一个进程占用.且一个进程可以绑定多个端口号; 但是一个端口号不能被多个进程绑定。
2.2端口号范围划分
0 - 1023: 知名端口号, HTTP, FTP, SSH 等这些广为使用的应用层协议, 他们的
端口号都是固定的.
1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作
系统从这个范围分配的.
2.3理解 "端口号" 和 "进程 ID"
我们之前在学习系统编程的时候, 学习了 pid 表示唯一一个进程; 此处我们的端口号也
是唯一表示一个进程. 那么这两者之间是怎样的关系?
进程 ID 属于系统概念, 技术上也具有唯一性, 确实可以用来标识唯一的一个进
程, 但是这样做, 会让系统进程管理和网络强耦合(pid每次启动的时候都会发送变化,那么两者之间有联系,意味着网络部分也要发送变化), 实际设计的时候, 并没有选择这
样做。我们要实现解耦,系统就是系统,网络就是网络,所以引入了端口号。但在系统中不是所有进程都有端口号,所有进程都有pid,只有需要进行网络通信的进程才有端口号。
理解源端口号和目的端口号
传输层协议(TCP 和 UDP)的数据段中有两个端口号, 分别叫做源端口号和目的端口号.
就是在描述 "数据是谁发的, 要发给谁"
2.4理解 socket
- 综上, IP 地址用来标识互联网中唯一的一台主机, port 用来标识该主机上唯一的一个网络进程
- IP+Port 就能表示互联网中唯一的一个进程
- 所以, 通信的时候, 本质是两个互联网进程代表人来进行通信, {srcIp,srcPort, dstIp, dstPort}这样的 4 元组就能标识互联网中唯二的两个进程
- 所以, 网络通信的本质, 也是进程间通信
- 我们把 ip+port 叫做套接字 socket
3.传输层的典型代表
如果我们了解了系统, 也了解了网络协议栈, 我们就会清楚, 传输层是属于内核
的, 那么我们要通过网络协议栈进行通信, 必定调用的是传输层提供的系统调用, 来
进行的网络通信
3.1认识 TCP 协议
此处我们先对 TCP(Transmission Control Protocol 传输控制协议)有一个直观的认识;
后面我们再详细讨论 TCP 的一些细节问题.
• 传输层协议
• 有连接
• 可靠传输(可靠性高)
• 面向字节流
3.2认识 UDP 协议
此处我们也是对 UDP(User Datagram Protocol 用户数据报协议)有一个直观的认识; 后
面再详细讨论.
• 传输层协议
• 无连接
• 不可靠传输(但操作简单)
• 面向数据报
4. 网络字节序
我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的
多字节数据相对于文件中的偏移地址也有大端小端之分, 网络数据流同样有大端小端之
分. 那么如何定义网络数据流的地址呢?
- 发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出;
- 接收主机把从网络上接到的字节依次保存在接收缓冲区中,也是按内存地址从低到高的顺序保存;
- 因此,网络数据流的地址应这样规定:先发出的数据是低地址,后发出的数据是高地址.
- TCP/IP 协议规定,网络数据流应采用大端字节序,即低地址高字节.
- 不管这台主机是大端机还是小端机, 都会按照这个 TCP/IP 规定的网络字节序来发送/接收数据;
- 如果当前发送主机是小端, 就需要先将数据转成大端; 否则就忽略, 直接发送即可;
但后面是有了规定:网络中通信,必须大端! 为使网络程序具有可移植性,使同样的 C 代码在大端和小端计算机上编译后都能正常运
行,可以调用以下库函数做网络字节序和主机字节序的转换。
• 这些函数名很好记,h 表示 host,n 表示 network,l 表示 32 位长整数,s 表示 16 位短整数。
• 例如 htonl 表示将 32 位的长整数从主机字节序转换为网络字节序,例如将 IP 地址转换后准备发送。
• 如果主机是小端字节序,这些函数将参数做相应的大小端转换然后返回;
• 如果主机是大端字节序,这些函数不做转换,将参数原封不动地返回。
5. socket 编程接口
socket 常见 API
C / / 创建 socket 文件描述符 (TCP/UDP, 客户端 + 服务器) int socket(int domain, int type, int protocol); // 绑定端口号 (TCP/UDP, 服务器) int bind(int socket, const struct sockaddr *address,socklen_t address_len); // 开始监听 socket (TCP, 服务器) int listen(int socket, int backlog); // 接收请求 (TCP, 服务器) int accept(int socket, struct sockaddr* address,socklen_t* address_len); // 建立连接 (TCP, 客户端) int connect(int sockfd, const struct sockaddr *addr,socklen_t addrlen);
sockaddr 结构
socket API 是一层抽象的网络编程接口,适用于各种底层网络协议,如 IPv4、 IPv6,以及
后面要使用的 UNIX Domain Socket. 然而, 各种网络协议的地址格式并不相同。
• IPv4 和 IPv6 的地址格式定义在 netinet/in.h 中,IPv4 地址用 sockaddr_in 结构
体表示,包括 16 位地址类型, 16 位端口号和 32 位 IP 地址.
• IPv4、 IPv6 地址类型分别定义为常数 AF_INET、 AF_INET6. 这样,只要取得某
种 sockaddr 结构体的首地址,不需要知道具体是哪种类型的 sockaddr 结构体,就可
以根据地址类型字段确定结构体中的内容.
• socket API 可以都用 struct sockaddr *类型表示, 在使用的时候需要强制转化成
sockaddr_in; 这样的好处是程序的通用性, 可以接收 IPv4, IPv6, 以及 UNIX Domain
Socket 各种类型的 sockaddr 结构体指针做为参数;(这就是C语言版本的多态,头部结构一致,因此可以接收不同的结构体)
sockaddr 结构sockaddr_in 结构
虽然 socket api 的接口是 sockaddr, 但是我们真正在基于 IPv4 编程时, 使用的数据结
构是 sockaddr_in; 这个结构里主要有三部分信息: 地址类型, 端口号, IP 地址
in_addr 结构in_addr 用来表示一个 IPv4 的 IP 地址. 其实就是一个 32 位的整数;
相关文章:

Linux--Socket编程预备
目录 1. 理解源 IP 地址和目的 IP 地址 2.端口号 2.1端口号(port)是传输层协议的内容 2.2端口号范围划分 2.3理解 "端口号" 和 "进程 ID" 2.4理解 socket 3.传输层的典型代表 3.1认识 TCP 协议 3.2认识 UDP 协议 4. 网络字节序 5. socket 编程接…...
100个python的基本语法知识【下】
50. 压缩文件: import zipfilewith zipfile.ZipFile("file.zip", "r") as zip_ref:zip_ref.extractall("extracted")51. 数据库操作: import sqlite3conn sqlite3.connect("my_database.db") cursor conn.c…...
Git如何将一个分支上的修改转移到另一个分支
在我们使用git进行版本控制时,当代码写错分支,怎么将这些修改转移到正确的分支上去呢?这时,我们可以使用git stath命令来暂存我们的修改,然后再切换到其他分支 未commit(提交)操作时 1. 先将修…...
jvm-证明cpu指令是乱序执行的案例
package jvm;/*** 证明cpu指令是乱序执行的** author 1* version 1.0* description: TODO* date 2024-07-19 9:31*/ public class T04_Disorder {private static int x 0, y 0;private static int a 0, b 0;public static void main(String[] args) throws InterruptedExcep…...
《流程引擎原理与实践》开源电子书
流程引擎原理与实践 电子书地址:https://workflow-engine-book.shuwoom.com 第一部分:流程引擎基础 1 引言 1.1 流程引擎介绍 1.2 流程引擎技术的发展历程 1.3 相关产品国内外发展现状 1.4 本书的内容和结构安排 2 概念 2.1 基础概念 2.2 进阶…...

谷粒商城实战笔记-52~53-商品服务-API-三级分类-新增-修改
文章目录 一,52-商品服务-API-三级分类-新增-新增效果完成1,点击Append按钮,显示弹窗2,测试完整代码 二,53-商品服务-API-三级分类-修改-修改效果完成1,添加Edit按钮并绑定事件2,修改弹窗确定按…...

uni-app 影视类小程序开发从零到一 | 开源项目分享
引言 在数字娱乐时代,对于电影爱好者而言,随时随地享受精彩影片成为一种日常需求。分享一款基于 uni-app 开发的影视类小程序。它不仅提供了丰富的影视资源推荐,还融入了个性化知乎日报等内容,是不错的素材,同时对电影…...
Python使用正则替换字符串
Python小技:使用正则替换字符串 java中有String.replaceAll()方法使用正则替换字符串, 在Python中,字符串也有一个replace方法,但是这个方法只能精准替换, 如果想正则替换,就要改成re.sub方法,而…...
每日一练,java03
目录 题目wait()、notify()和notifyAll()方法的特性和使用场景wait() 方法notify() 方法notifyAll() 方法使用场景 注意事项 题目 选自牛客网 1.下面关于JAVA的垃圾回收机制,正确的是( ) A.当调用“System.gc()”来强制回收时,系…...

【机器学习】深入理解损失函数(Loss Functions)
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 深入理解损失函数(Loss Functions)什么是损失函数?常见损失函数类型1. 均方误差…...
python实现特征检测算法3
python实现SIFT(尺度不变特征变换)算法、SURF(Speeded Up Robust Features)算法 1.SIFT算法详解算法步骤Python实现详细解释优缺点应用领域2.SURF算法详解算法步骤Python实现详细解释SURF算法原理优缺点应用领域尺度不变特征变换(SIFT,Scale-Invariant Feature Transform…...

软件更新的双刃剑:从”微软蓝屏”事件看网络安全的挑战与对策
引言 原文链接 近日,一场由微软视窗系统软件更新引发的全球性"微软蓝屏"事件震惊了整个科技界。这次事件源于美国电脑安全技术公司"众击"提供的一个带有"缺陷"的软件更新,如同一颗隐形炸弹在全球范围内引爆,…...
Redis 主从搭建
Redis主从搭建 7.2.5 文章目录 一. 同主机搭建Redis主从1. 环境介绍2. 环境前准备工作3. 安装 Redis 7.2.54. redis 配置修改并且启动4.1 修改配置文件4.2 编写启动脚本 5. 开启主从5.1 开启5.2 主库实例查看主从信息5.3 从库实例查看主从信息5.4 验证主从配置是否生效 6. 解除…...
LeetCode 129, 133, 136
文章目录 129. 求根节点到叶节点数字之和题目链接标签思路代码 133. 克隆图题目链接标签思路代码 136. 只出现一次的数字题目链接标签思路代码 129. 求根节点到叶节点数字之和 题目链接 129. 求根节点到叶节点数字之和 标签 树 深度优先搜索 二叉树 思路 由于本题需要 从…...
macOS 环境Qt Creator 快捷键
在 macOS 环境下,Qt Creator 是一个流行的集成开发环境(IDE),用于开发 Qt 项目。下面是一些常用的快捷键和操作技巧,帮助你更高效地使用 Qt Creator 进行项目开发和管理: 在 macOS 中,Cmd 键 四…...

【C# WInForm】将TextBox从输入框设置为文本框
1.需求情形: textbox作为最常用的控件之一,通常是用来输入文本信息或者显示文字,但是如果要在界面中显示大段文本,一个带有边框、可选中的文本样式似乎不合适。像这样: 我需要的是这段文字不仅能跨行,而且…...

minio 服务docker配置
用minio docker配置了一个服务,分享链接始终是127.0.01开始的, 改成docker的host的ip则提示签名不匹配, 好在这个文件主要是用来下载的,所以可以通过设置bucket的匿名访问权限来实现下载; 这样不需要后面的地址参数就…...
开源模型应用落地-LangChain高阶-智能体探究-自定义agent(五)
一、前言 大模型具有非常强大的功能,可以解答疑问、撰写报告和文档、总结内容、进行翻译等各种日常工作任务。然而,大模型还可以应用于更多的场景,发挥出更强大的作用。 通过智能体,我们可以实现许多有价值的事情,比如:在日常生活中,我们能借助智能体实现智能家居的自动化…...

16_网络IPC4-数据传输
send() 用于流式套接字 向SOCKET发送数据 。 Socket 只是通信节点,通信之前需要连接,即发送端发送之前 需要知道对端的地址,才能找到对端的socket节点,才能发送成功。而接收端不同,接收函数 如 recv () 不需要一定知道…...

怎样做好仓库管理工作?如何利用仓库管理系统进行有效管理?
我前前后后跑遍了十几家仓储设备公司,跟那些制造业的朋友们聊了个痛快,从他们那儿学到了不少仓库管理的实践方法。 回来自己整理了一套仓库管理更高效的实用方法,现在就来跟大家伙儿聊聊仓库管理中那些常见问题,以及我是怎么琢磨…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

ZYNQ学习记录FPGA(二)Verilog语言
一、Verilog简介 1.1 HDL(Hardware Description language) 在解释HDL之前,先来了解一下数字系统设计的流程:逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端,在这个过程中就需要用到HDL,正文…...
【系统架构设计师-2025上半年真题】综合知识-参考答案及部分详解(回忆版)
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7题】【第8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16题】【第17题】【第18题】【第19题】【第20~21题】【第…...