当前位置: 首页 > news >正文

响应式编程框架Reactor之 Flux 和 Mono 的介绍和区别

Flux和Mono在Reactor框架中都是响应式编程模型的重要概念,它们在处理异步数据流时发挥着重要作用,两者之间也存在一些差异。

Mono的介绍

基本概念

  • Mono是Reactor中的一个类,它表示一个异步的单个值或零个值的结果。
  • Mono可以看作是一个特殊的Publisher,用于产生数据流,但这个数据流最多只包含一个元素,或者在没有任何元素时直接发出完成信号或错误信号。

作用

  • Mono主要用于处理那些预期会返回一个单一结果或不需要返回任何结果的异步操作,如数据库查询(假设查询结果是唯一的)、网络请求等。
  • 它提供了丰富的操作符来支持数据的转换、过滤、组合等操作,以及错误处理和资源管理等。

创建方式

  • 可以通过Mono的静态方法创建,如Mono.just(value)Mono.empty()Mono.error(Throwable)等。
  • 也可以从其他异步源创建,如Mono.fromCallable(Callable<T>)Mono.fromFuture(Future<T>)等。

Flux的介绍

基本概念

  • Flux是Reactor中的另一个类,它表示一个异步的N个值的序列。
  • Flux可以看作是一个标准的Publisher,用于产生数据流

相关文章:

响应式编程框架Reactor之 Flux 和 Mono 的介绍和区别

Flux和Mono在Reactor框架中都是响应式编程模型的重要概念,它们在处理异步数据流时发挥着重要作用,两者之间也存在一些差异。 Mono的介绍 基本概念: Mono是Reactor中的一个类,它表示一个异步的单个值或零个值的结果。Mono可以看作是一个特殊的Publisher,用于产生数据流,…...

2.3 openCv 对矩阵执行掩码操作

在矩阵上进行掩模操作相当简单。其基本思想是根据一个掩模矩阵(也称为核)来重新计算图像中每个像素的值。这个掩模矩阵包含的值决定了邻近像素(以及当前像素本身)对新的像素值产生多少影响。从数学角度来看,我们使用指定的值来做一个加权平均。 具体而言,掩模操作通常涉…...

贪心算法(三) ---cmp_to_key, 力扣452,力扣179

目录 cmp_to_key 比较函数 键函数 cmp_to_key 的作用 使用 cmp_to_key 代码解释 力扣452 ---射气球 题目 分析 代码 力扣179 ---最大数 题目 分析 代码 cmp_to_key 在Python中&#xff0c;cmp_to_key 是一个函数&#xff0c;它将一个比较函数转换成一个键函数…...

学生信息管理系统详细设计文档

一、设计概述 学生信息管理系统是一个用于管理学生信息的软件系统&#xff0c;旨在提高学校对学生信息的管理效率。本系统主要包括学生信息管理、课程信息管理、成绩信息管理、班级信息管理等功能模块。详细设计阶段的目标是确定各个模块的实现算法&#xff0c;并精确地表达这…...

leetcode10 -- 正则表达式匹配

题目描述&#xff1a; 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符* 匹配零个或多个前面的那一个元素 所谓匹配&#xff0c;是要涵盖 整个 字符串 s的&#xff0c;而不是部分字符串。 示例 1&#xff1…...

Binius-based zkVM:为Polygon AggLayer开发、FPGA加速的zkVM

1. 引言 近日&#xff0c;ZK硬件加速巨头Irreducible和Polygon团队宣布联合开发生产级的Binius-based zkVM&#xff0c;用于助力Polygon AggLayer&#xff0c;实现具有低开销、硬件加速的binary proofs。 Irreducible&#xff08;曾用名为Ulvetanna&#xff09;团队 Benjamin …...

基于 HTML+ECharts 实现的大数据可视化平台模板(含源码)

构建大数据可视化平台模板&#xff1a;基于 HTML 和 ECharts 的实现 大数据的可视化对于企业决策、市场分析和业务洞察至关重要。通过直观的数据展示&#xff0c;团队可以快速理解复杂的数据模式&#xff0c;发现潜在的业务机会。本文将详细介绍如何利用 HTML 和 ECharts 实现一…...

特征工程在机器学习中的重要性

特征工程在机器学习中的重要性 特征工程在机器学习中占据着至关重要的地位&#xff0c;它是连接原始数据与机器学习模型之间的桥梁。通过特征工程&#xff0c;我们可以将原始数据转换为机器学习算法能够有效利用的形式&#xff0c;从而提高模型的性能和准确性。以下是特征工程…...

【css】flex布局父元素宽度或高度无法被子元素撑开-bug记录

简言 flex布局父元素宽度或高度无法被子元素撑开问题。 解决方案&#xff1a; 手动计算子元素内容所占宽高&#xff0c;手动赋值给父元素即可。 flex布局宽高度问题 flex布局现在是特别常见得布局方式。 在此记录一个注意点&#xff1a;flex布局在不换行得情况下&#xff0c…...

Music Tag Editor Pro for Mac:强大的音频标签管理工具

Music Tag Editor Pro for Mac是一款专为Mac系统设计的音频标签管理工具&#xff0c;其简易直观的操作界面和强大的功能深受用户喜爱。 这款软件的核心功能在于它能够批量编辑各类音频文件的标签。无论是修改元数据、重命名文件&#xff0c;还是转换音乐标签的文本编码&#x…...

2024秋招算法

文章目录 参考资料一 数组1.1 二分查找1.2 移除元素1.3 长度最小的子数组1.4 螺旋矩阵1.5 在排序数组中查找元素的第一个和最后一个位置 二 链表2.1 移除链表元素2.2 设计链表2.3 反转链表2.4 两两交换链表中的节点2.5 删除链表的倒数第N个节点2.6 链表相交2.7 环形链表II 三 哈…...

El-Table 表格的表头字段切换

最近写了一个小功能&#xff0c;比较有意思&#xff0c;特此博客记录。 提出需求&#xff1a;需要表头字段变化&#xff0c;但是我在官网上的表格相关上查找&#xff0c;没有发现便捷方法。 于是我有两个想法&#xff1a;1.做三个不同的表格。2.做一个表格使用不同的表头字段。…...

分布式事务 详解

1.简介 2.本地事务失效问题 可以使用AOP starter aspectJ 代理 这样就可以拿到它的上下文的代理对象&#xff0c;当然是有这样的需求才这么做 如果你的事务只是想默认的传播行为&#xff0c;共用上面的事务&#xff0c;就可以不用这个啦 详情请去了解 Raft 算法 还有 pa…...

【git】太大了失败: fatal: fetch-pack: invalid index-pack output

#‘’ Git仓库过大致使clone失败的解决方法 上述大神的方法&#xff0c;亲测有效 中途失败: 太大了 fetch-pack: unexpected disconnect while reading sideband packet fatal: early EOF fatal: fetch-pack: invalid index-pack output关闭压缩 git config --global core.…...

在 ArchLinux 上编译运行 axmol 引擎

本文将在 Windows 10 上安装 Arch WSL 中编译 axmol 请确保 WSL2 已正确安装 1. 在微软应用商店安装 ArchLinux 2. 打开 Arch&#xff0c;按照提示输入用户名和密码&#xff0c;尽量简单 3. 配置清华源&#xff0c;速度快的起飞&#xff0c;否则&#xff0c;各种包会安装失败…...

云计算的三种服务模式

云计算的三种主要服务模式分别是基础设施即服务&#xff08;IaaS&#xff09;、平台即服务&#xff08;PaaS&#xff09;和软件即服务&#xff08;SaaS&#xff09;。每种服务模式都提供不同级别的抽象和管理&#xff0c;满足不同的需求和用例。以下是对这三种服务模式的详细介…...

Pytorch使用教学1-Tensor的创建

0 导读 在我们不知道什么是深度学习计算框架时&#xff0c;我们可以把PyTorch看做是Python的第三方库&#xff0c;在PyTorch中定义了适用于深度学习的张量Tensor&#xff0c;以及张量的各类计算。就相当于NumPy中定义的Array和对应的科学计算方法&#xff0c;正是这些基本数据…...

R语言统计分析——数据管理4

参考资料&#xff1a;R语言实战【第2版】 1、数学函数 abs(x)&#xff1a;绝对值 sqrt(x)&#xff1a;平方根 ceiling(x)&#xff1a;不小于x的最小整数 floor(x)&#xff1a;不大于x的最大整数 trunc(x)&#xff1a;向0的方向截取x中的整数部分 round(x,digitsn)&#…...

用uniapp 及socket.io做一个简单聊天app 2

在这里只有群聊&#xff0c;二个好友聊天&#xff0c;可以认为是建了一个二人的群聊。 const express require(express); const http require(http); const socketIo require(socket.io); const cors require(cors); // 引入 cors 中间件const app express(); const serv…...

Si24R03:高度集成的低功耗SOC芯片中文资料

Si24R03是一款高度集成的低功耗SOC芯片&#xff0c;具有低功耗、Low Pin Count、宽电压工作范围&#xff0c;集成了13/14/15/16位精度的 ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、无线收发器等丰富的外设。 合封说明&#xff1a;Si24R03为CSM32RV003和Si24R1的合封芯…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...