当前位置: 首页 > news >正文

基于Vision Transformer的mini_ImageNet图片分类实战

【图书推荐】《PyTorch深度学习与计算机视觉实践》-CSDN博客

PyTorch计算机视觉之Vision Transformer 整体结构-CSDN博客

mini_ImageNet数据集简介与下载

mini_ImageNet数据集节选自ImageNet数据集。ImageNet是一个非常有名的大型视觉数据集,它的建立旨在促进视觉识别研究。ImageNet为超过1400万幅图像进行了注释,而且给至少100万幅图像提供了边框。同时,ImageNet包含2万多个类别,比如“气球”“轮胎”和“狗”等类别,ImageNet的每个类别均不少于500幅图像。

训练这么多图像需要消耗大量的资源,为了节约资源,后续的研究者在全ImageNet的基础上提取出了mini_ImageNet数据集。Mini_ImageNet包含100类共60000幅彩色图片,其中每类有600个样本,每幅图片的规格为84×84。通常而言,这个数据集的训练集和测试集的类别划分为80:20。相比于CIFAR-10数据集,mini_ImageNet数据集更加复杂,但更适合进行原型设计和实验研究。

mini_ImageNet的下载也很容易,读者可以使用提供的库包完成对应的下载操作,安装命令如下:

pip install MLclf

Vision Transformer模型设计

下面就是对训练过程的Vision Transformer进行模型设计,在11.1.4节完成的Vision Transformer模型的设计,针对的是224维度大小的图片,而此时使用的是mini版本的ImageNet,因此在维度上会有所变换。本例Vision Transformer模型的完整代码如下:

import torch
from vit import PatchEmbed,Blockclass VisionTransformer(torch.nn.Module):def __init__(self,num_patches = 1,image_size = 84,patch_size = 14,embed_dim = 588,num_heads = 6,qkv_bias = True,depth = 3,num_class = 64):super().__init__()#初始化PatchEmbed层self.patch_embed  = PatchEmbed(img_size = image_size,patch_size=patch_size,embed_dim=embed_dim)#增加一个作为标志物的参数self.cls_token = torch.nn.Parameter(torch.zeros(1, 1, embed_dim))#建立位置向量,计算embedding的长度self.num_tokens = (image_size * image_size) // (patch_size * patch_size)self.pos_embed = torch.nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))#这里在使用block模块时采用了指针的方式,注意*号self.blocks = torch.nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=4.0, qkv_bias=qkv_bias) for _ in range(depth)])#最终的logits推断层self.logits_layer = torch.nn.Sequential(torch.nn.Linear(embed_dim, 512),torch.nn.GELU(),torch.nn.Linear(512, num_class))def forward(self,x):embedding = self.patch_embed(x)#添加标志物cls_token = self.cls_token.expand(x.shape[0], -1, -1)embedding = torch.cat((cls_token, embedding), dim=1)  #[B, 197, 768]embedding += self.pos_embedembedding = self.blocks(embedding)embedding = embedding[:,0]embedding = torch.nn.Dropout(0.1)(embedding)logits = self.logits_layer(embedding)return logitsif __name__ == '__main__':image = torch.randn(size=(2,3,84,84))VisionTransformer()(image)

《PyTorch深度学习与计算机视觉实践(人工智能技术丛书)》(王晓华)【摘要 书评 试读】- 京东图书 (jd.com)

相关文章:

基于Vision Transformer的mini_ImageNet图片分类实战

【图书推荐】《PyTorch深度学习与计算机视觉实践》-CSDN博客 PyTorch计算机视觉之Vision Transformer 整体结构-CSDN博客 mini_ImageNet数据集简介与下载 mini_ImageNet数据集节选自ImageNet数据集。ImageNet是一个非常有名的大型视觉数据集,它的建立旨在促进视觉…...

JS中map()使用记录

优点和缺点 总的来说,map() 方法是一个强大的工具,适合于需要将数组中的每个元素转换为新形式的情况。然而,对于性能敏感的应用或需要更复杂控制逻辑的场景,可能需要考虑其他方法。 优点: 函数式编程风格&#xff1a…...

JavaWeb学习——请求响应、分层解耦

目录 一、请求响应学习 1、请求 简单参数 实体参数 数组集合参数 日期参数 Json参数 路径参数 总结 2、响应 ResponseBody&统一响应结果 二、分层解耦 1、三层架构 三层架构含义 架构划分 2、分层解耦 引入概念 容器认识 3、IOC&DI入门 4、IOC详解 …...

Vue中!.和?.是什么意思

在Vue(或更广泛地说,在JavaScript和TypeScript中),!. 和 ?. 是两个与可选链(Optional Chaining)和断言非空(Non-null Assertion)相关的操作符,它们分别用于处理可能为nu…...

秋招突击——7/22——复习{堆——前K个高频元素}——新作{回溯——单次搜索、分割回文串。链表——环形链表II,合并两个有序链表}

文章目录 引言复习堆堆——前K个高频元素个人实现复习实现二参考实现 新作单词搜索个人实现参考实现 分割回文串个人实现参考实现 环形链表II个人实现参考实现 两个有序链表个人实现 总结 引言 又是充满挑战性的一天,继续完成我们的任务吧!继续往下刷&a…...

android13禁用某个usb设备

总纲 android13 rom 开发总纲说明 目录 1.前言 2.触摸设备查看 3.功能修改 3.1 禁用usb触摸 3.2 禁用usb键盘 3.3 禁用usb遥感 4.查看生效与否 5.彩蛋 1.前言 用户想要禁止使用某些usb设备,需要系统不能使用相关的usb设备,例如usb触摸屏,usb键盘,usb遥感等等usb…...

tmux相关命令

tmux相关命令 1、tmux介绍2、会话(session)、窗口(windows)、窗格(pane)3、会话相关命令4、窗口相关命令5、窗格相关命令6、内容查看7、tmux配置文件 1、tmux介绍 略 2、会话(session&#xf…...

初创小程序公司怎么选服务器合作商

初创小程序公司怎么选服务器合作商?在移动互联网的浪潮中,小程序以其轻量、便捷、即用即走的特点,成为了众多初创企业快速触达用户、展现创意与服务的理想平台。然而,对于初创小程序公司而言,如何在纷繁复杂的服务器市…...

基于微信小程序+SpringBoot+Vue的自习室选座与门禁系统(带1w+文档)

基于微信小程序SpringBootVue的自习室选座与门禁系统(带1w文档) 基于微信小程序SpringBootVue的自习室选座与门禁系统(带1w文档) 本课题研究的研学自习室选座与门禁系统让用户在小程序端查看座位,预定座位,支付座位价格,该系统让用户预定座位…...

【Linux】进程IO|重定向|缓冲区|dup2|dup|用户级缓冲区|模拟缓冲区

目录 前言 重定向 实验一 为什么log.txt文件的文件描述符是1 为什么向stdout打印的信息也出现在文件中 实验二 用户级缓冲区 为什么要有用户级缓冲区 系统调用 dup 为什么close(fd1)之后还能向log.txt写入数据? dup2 缓冲区 观察现象 测试1 测试2 测…...

bug bug bug

importError: DLL load failed while importing _multiarray_umath: 找不到指定的模块。 Traceback (most recent call last): File "D:\yolov8_about\ultralytics-main3\trainCPU.py", line 4, in <module> from ultralytics import YOLO File "…...

医疗器械上市欧美,需要什么样的网络安全相关申报文件?

医疗器械在欧美上市时&#xff0c;需要提交的网络安全相关申报文件主要包括以下几个方面&#xff0c;这些要求基于欧美地区的法律法规和监管机构的指导文件。 一、美国FDA要求 1. 网络安全管理计划 内容&#xff1a;制造商需要提交一份网络安全管理计划&#xff0c;该计划应包含…...

【UbuntuDebian安装Nginx】在线安装Nginx

云计算&#xff1a;腾讯云轻量服务器 操作系统&#xff1a;Ubuntu-v22 1.更新系统软件包列表 打开终端并运行以下命令来确保你的系统软件包列表是最新的&#xff1a; sudo apt update2.安装 Nginx 使用以下命令安装 Nginx&#xff1a; sudo apt install nginx3.启动 Nginx…...

Jacoco 单元测试配置

前言 编写单元测试是开发健壮程序的有效途径&#xff0c;单元测试写的好不好可以从多个指标考量&#xff0c;其中一个就是单元测试的覆盖率。单元测试覆盖率可以看到我们的单元测试覆盖了多少代码行、类、分支等。查看单元测试覆盖率可以使用一些工具帮助我们计算&#xff0c;…...

App Instance 架构示例

前言 在Unity程序设计过程中&#xff0c;我们处理的第一个对象是Application Instance。 它的主要职责是启动流程管理、卸载流程管理&#xff0c;次要职责是管理在内部的子系统生命周期。其他职责&#xff0c;提供或桥接应用程序的配置信息、及其他第三方接口。 它通常以单例的…...

【论文速读】| MoRSE:利用检索增强生成技术填补网络安全专业知识的空白

本次分享论文&#xff1a;MoRSE: Bridging the Gap in Cybersecurity Expertise with Retrieval Augmented Generation 基本信息 原文作者&#xff1a;Marco Simoni, Andrea Saracino, Vinod Puthuvath, Maurco Conti 作者单位&#xff1a;意大利比萨国家研究委员会信息学与…...

pip install albumentations安装下载超级细水管

albumentations 是一个用于图像增强的 Python 库&#xff0c;它提供了丰富的图像变换功能&#xff0c;可以用于数据增强&#xff0c;从而提高深度学习模型的泛化能力。 直接安装命令&#xff1a; pip install albumentations但是如果半夜遇到这种19kB/s的下载速度 为头发着想&…...

驱动开发系列07 - 驱动程序如何分配内存

一:概述 Linux 内核提供了丰富的内存分配函数、在本文中,我们将介绍在设备驱动程序中分配和使用内存的方法,以及如何优化系统的内存资源。由于内核为驱动程序提供了统一的内存管理接口。所以我们不会去讨论不同架构是如何管理内存的,文本不涉及分段、分页等问题,此外在本文…...

【Jackson】注解及其使用

Jackson库提供了多种注解&#xff08;annotations&#xff09;&#xff0c;可以用来控制JSON序列化和反序列化的行为。这些注解允许你灵活地映射Java对象与JSON数据之间的关系。下面将详细介绍一些常用的Jackson注解及其用法。 1. JsonProperty 作用: 用于指定JSON属性与Java…...

LeetCode24 两两交换链表中的节点

前言 题目&#xff1a; 24. 两两交换链表中的节点 文档&#xff1a; 代码随想录——两两交换链表中的节点 编程语言&#xff1a; C 解题状态&#xff1a; 没画图&#xff0c;被绕进去了… 思路 思路还是挺清晰的&#xff0c;就是简单的模拟&#xff0c;但是一定要搞清楚交换的…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...