当前位置: 首页 > news >正文

Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类

Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备
Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量
Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建
Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器
Mindspore框架循环神经网络RNN模型实现情感分类|(五)模型训练
Mindspore框架循环神经网络RNN模型实现情感分类|(六)模型加载和推理(情感分类模型资源下载)
Mindspore框架循环神经网络RNN模型实现情感分类|(七)模型导出ONNX与应用部署

tips:安装依赖库

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
pip install tqdm requests

一、RNN模型构建

数据集准备完成了输入文本通过查字典(序列化)的向量化。并使用nn.Embedding层加载了Glove词向量。下一步将使用RNN循环神经网络做特征提取,最后将RNN连接至全连接网络nn.Dednse,将特征转化为分类。

nn.Embedding -> nn.RNN -> nn.Dense

本项目,采用规避RNN梯度消的变种LSTM(Long short-term memory)代替RNN做特征提取层。

1.1 关于RNN

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

RNN-0

图示左侧为一个RNN Cell循环,右侧为RNN的链式连接平铺。实际上不管是单个RNN Cell还是一个RNN网络,都只有一个Cell的参数,在不断进行循环计算中更新。

由于RNN的循环特性,和自然语言文本的序列特性(句子是由单词组成的序列)十分匹配,因此被大量应用于自然语言处理研究中。下图为RNN的结构拆解:

RNN

1.2 关于LSTM(Long short-term memory)

RNN单个Cell的结构简单,因此也造成了梯度消失(Gradient Vanishing)问题,具体表现为RNN网络在序列较长时,在序列尾部已经基本丢失了序列首部的信息。为了克服这一问题,LSTM(Long short-term memory)被提出,通过门控机制(Gating Mechanism)来控制信息流在每个循环步中的留存和丢弃。下图为LSTM的结构拆解:

LSTM

本项目选择LSTM变种而不是经典的RNN做特征提取,可规避梯度消失问题,并获得更好的模型效果。
在MindSpore中nn.LSTM对应的公式:

h 0 : t , ( h t , c t ) = LSTM ( x 0 : t , ( h 0 , c 0 ) ) h_{0:t}, (h_t, c_t) = \text{LSTM}(x_{0:t}, (h_0, c_0)) h0:t,(ht,ct)=LSTM(x0:t,(h0,c0))

这里nn.LSTM隐藏了整个循环神经网络在序列时间步(Time step)上的循环,送入输入序列、初始状态,即可获得每个时间步的隐状态(hidden state`)拼接而成的矩阵,以及最后一个时间步对应的隐状态。我们使用最后的一个时间步的隐状态作为输入句子的编码特征,送入下一层

Time step:在循环神经网络计算的每一次循环,成为一个Time step。在送入文本序列时,一个Time step对应一个单词。因此在本例中,LSTM的输出 h 0 : t h_{0:t} h0:t对应每个单词的隐状态集合, h t h_t ht c t c_t ct对应最后一个单词对应的隐状态。

下一层:全连接层,即nn.Dense,将特征维度变换为二分类所需的维度1,经过Dense层后的输出即为模型预测结果。

1.3 特征提取网络构建

RNN循环神经网络: nn.LSTM()
初始化参数:

 embeddings:输入向量,hidden_dim:隐藏层特征的维度, output_dim:输出维数, n_layers:RNN 层的数量,bidirectional:是否为双向 RNN, pad_idx:padding_idx参数用于标记输入中的填充值(padding value)。在自然语言处理任务中,文本序列的长度不一致是非常常见的。为了能够对不同长度的文本序列进行批处理,我们通常会使用填充值对较短的序列进行填补。

tips:使用nn.embeddings()创建嵌入层时,可以通过padding_idx参数指定一个特定的索引,用于表示填充值。
embedding_layer = nn.Embedding(num_embeddings, embedding_dim, padding_idx=0),将padding_idx设置为0,表示使用索引为0的词汇作为填充值。在文本序列中,我们将使用0来填充较短的序列。

import math
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Uniform, HeUniformclass RNN(nn.Cell):def __init__(self, embeddings, hidden_dim, output_dim, n_layers,bidirectional, pad_idx):super().__init__()vocab_size, embedding_dim = embeddings.shapeself.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=ms.Tensor(embeddings), padding_idx=pad_idx)self.rnn = nn.LSTM(embedding_dim,hidden_dim,num_layers=n_layers,bidirectional=bidirectional,batch_first=True)weight_init = HeUniform(math.sqrt(5))bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)def construct(self, inputs):embedded = self.embedding(inputs)_, (hidden, _) = self.rnn(embedded)hidden = ops.concat((hidden[-2, :, :], hidden[-1, :, :]), axis=1)output = self.fc(hidden)return output

实例化模型,打印输出

hidden_size = 256
output_size = 1
num_layers = 2
bidirectional = True
lr = 0.001
pad_idx = vocab.tokens_to_ids('<pad>')model = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, pad_idx)
print(model)

在这里插入图片描述

相关文章:

Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类 Mindspore框架循环神经网络RNN模型实现情感分类|&#xff08;一&#xff09;IMDB影评数据集准备 Mindspore框架循环神经网络RNN模型实现情感分类|&#xff08;二&#xff09;预训练词向量 Mindspore框架循环神经网络RNN模型实现…...

深度解读大语言模型中的Transformer架构

一、Transformer的诞生背景 传统的循环神经网络&#xff08;RNN&#xff09;和长短期记忆网络&#xff08;LSTM&#xff09;在处理自然语言时存在诸多局限性。RNN 由于其递归的结构&#xff0c;在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依…...

安装好anaconda,打开jupyter notebook,新建 报500错

解决办法&#xff1a; 打开anaconda prompt 输入 jupyter --version 重新进入jupyter notebook&#xff1a; 可以成功进入进行代码编辑...

C++20之设计模式:状态模式

状态模式 状态模式状态驱动的状态机手工状态机Boost.MSM 中的状态机总结 状态模式 我必须承认:我的行为是由我的状态支配的。如果我没有足够的睡眠&#xff0c;我会有点累。如果我喝了酒&#xff0c;我就不会开车了。所有这些都是状态(states)&#xff0c;它们支配着我的行为:…...

数据库安全综合治理方案(可编辑54页PPT)

引言&#xff1a;数据库安全综合治理方案是一个系统性的工作&#xff0c;需要从多个方面入手&#xff0c;综合运用各种技术和管理手段&#xff0c;确保数据库系统的安全稳定运行。 方案介绍&#xff1a; 数据库安全综合治理方案是一个综合性的策略&#xff0c;旨在确保数据库系…...

人工智能:大语言模型提示注入攻击安全风险分析报告下载

大语言模型提示注入攻击安全风险分析报告下载 今天分享的是人工智能AI研究报告&#xff1a;《大语言模型提示注入攻击安全风险分析报告》。&#xff08;报告出品方&#xff1a;大数据协同安全技术国家工程研究中心安全大脑国家新一代人工智能开放创新平台&#xff09; 研究报告…...

【购买源码时有许多需要注意的坑】

购买源码时有许多需要注意的“坑”&#xff0c;这些坑可能会对项目的后续开发和使用造成严重影响。以下是一些需要特别注意的方面&#xff1a; 源码的完整性 编译测试&#xff1a;确保到手的源码能够从头至尾编译、打包、部署和功能测试无误。这一步非常关键&#xff0c;因为只…...

CAS的三大问题和解决方案

一、ABA问题的解决方案 变量第一次读取的值是1&#xff0c;后来其他线程改成了3&#xff0c;然后又被其他线程修改成了1&#xff0c;原来期望的值是第一个1才会设置新值&#xff0c;第二个1跟期望不符合&#xff0c;但是&#xff0c;可以设置新值。 解决方案&#xff1a; &a…...

EDA和统计分析有什么区别

EDA&#xff08;Electronic Design Automation&#xff09;和统计分析在多个方面存在显著的区别&#xff0c;这些区别主要体现在它们的应用领域、目的、方法以及所使用的工具上。 EDA&#xff08;电子设计自动化&#xff09; 定义与目的&#xff1a; EDA是电子设计自动化&…...

CentOS 7 修改DNS

1、nmcli connection show 命令找到设备名称 # nmcli connection show NAME UUID TYPE DEVICE enp4s0 99559edf-4e0a-4bae-a528-6d75065261e9 ethernet enp4s0 2、nmcli connection modify 命令修改dns nmcli connection modif…...

PHP基础语法-Part2

if-else语句、switch语句 与其他语言相同 循环结构 for循环while循环do-while循环foreach循环&#xff0c;搭配数组使用 foreach ($age as $avlue) //只输出值 {xxx; } foreach ($age as $key > $avlue) //键和值都输出 {xxx; }foreach ($age as $key >…...

数据结构门槛-顺序表

顺序表 1. 线性表2. 顺序表2.1 静态顺序表2.2 动态顺序表2.2.1 动态数据表初始化和销毁2.2.2 动态数据表的尾插尾删2.2.3 动态数据表的头插头删2.2.4 动态数据表的中间部分插入删除2.2.5 动态数据表的查询数据位置 3. 总结 1. 线性表 线性表&#xff08;linear list&#xff0…...

软件测试面试准备工作

1、 什么是数据库? 答&#xff1a;数据库是按照某种数据模型组织起来的并存放二级存储器中的数据集合。 2、 什么是关系型数据库? 答&#xff1a;关系型数据库是建立在关系数据库模型基础上的数据库&#xff0c; 借助集合代数等概念和方法处理数据库中的数据。目前主流的关…...

Java面试八股之后Spring、spring mvc和spring boot的区别

Spring、spring mvc和spring boot的区别 Spring, Spring Boot和Spring MVC都是Spring框架家族的一部分&#xff0c;它们各自有其特定的用途和优势。下面是它们之间的主要区别&#xff1a; Spring: Spring 是一个开源的轻量级Java开发框架&#xff0c;最初由Rod Johnson创建&…...

linux对齐TOF和RGB摄像头画面

问题&#xff1a;TOF和RGB画面不对齐 linux同时接入TOF和RGB&#xff0c;两者出图时间是由驱动层控制&#xff08;RGB硬件触发出图&#xff09;&#xff0c;应用层只负责读取数据。 现在两者画面不对齐&#xff0c;发现是开始的时候两者出图数量不一致导致的。底层解决不了&a…...

配置linux客户端免密登录服务端linux主机的root用户

1、客户端与服务端的ip 客户端IP地址服务端IP地址 2、定位客户端&#xff0c;由客户端制作公私钥对 [rootclient ~]# ssh-keygen -t rsa &#xff08;RSA是非对称加密算法&#xff09; # 一路回车 3、定位客户端&#xff0c;将公钥上传到服务器端root账户 [rootc…...

SpringMVC实现文件上传

导入文件上传相关依赖 <!--文件上传--> <dependency><groupId>commons-fileupload</groupId><artifactId>commons-fileupload</artifactId><version>1.3.1</version> </dependency> <dependency><groupId>…...

计算机实验室排课查询小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;教师管理&#xff0c;实验室信息管理&#xff0c;实验室预约管理&#xff0c;取消预约管理&#xff0c;实验课程管理&#xff0c;实验报告管理&#xff0c;报修信息管理&#xff0…...

分享几种电商平台商品数据的批量自动抓取方式

在当今数字化时代&#xff0c;电商平台作为商品交易的重要渠道&#xff0c;其数据对于商家、市场分析师及数据科学家来说具有极高的价值。批量自动抓取电商平台商品数据成为提升业务效率、优化市场策略的重要手段。本文将详细介绍几种主流的电商平台商品数据批量自动抓取方式&a…...

mysql面试(五)

前言 本章节从数据页的具体结构&#xff0c;分析到如何生成索引&#xff0c;如何构成B树的索引结构。 以及什么是聚簇索引&#xff0c;什么是联合索引 InnoDB数据结构 行数据 我看各种文档中有好多记录数据结构的&#xff0c;但是这些都是看完就忘的东西。在这里详细讲也没…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...